应用生态学报 ›› 2021, Vol. 32 ›› Issue (1): 369-376.doi: 10.13287/j.1001-9332.202101.026
• 综合评述 • 上一篇
魏守才1, 谢文军1, 夏江宝1, 梁爱珍2*
收稿日期:
2020-07-16
接受日期:
2020-11-16
出版日期:
2021-01-15
发布日期:
2021-07-15
通讯作者:
* E-mail: liangaizhen@iga.ac.cn
作者简介:
魏守才, 男, 1985年生, 副教授。主要从事盐碱条件下土壤生态研究。E-mail: shoucaiwei@hotmail.com
基金资助:
WEI Shou-cai1, XIE Wen-jun1, XIA Jiang-bao1, LIANG Ai-zhen2*
Received:
2020-07-16
Accepted:
2020-11-16
Online:
2021-01-15
Published:
2021-07-15
Contact:
* E-mail: liangaizhen@iga.ac.cn
Supported by:
摘要: 土壤团聚体是土壤结构的基本单元,对改善土壤结构和增加土壤固碳具有重要作用。盐渍化导致的特殊土壤性质,如高盐分离子(主要为Na+)浓度、低有机质含量和较差的微生物条件等因素,对团聚体的形成和稳定产生障碍作用,因此探讨盐渍化土壤团聚体特征更具有重要性和特殊性。滨海湿地和内陆盐渍化沼泽湿地是盐渍化生态系统的重要组成部分。本文系统整理和总结了国内外盐渍化土壤团聚体及其有机碳的研究进展,并对上述两种盐渍化湿地生态系统中土壤团聚体研究进行了综述。土壤有机无机改良剂添加、耕作方式、植被类型、秸秆还田以及微咸水灌溉等农业措施对盐渍化土壤团聚体及其有机碳形成和稳定具有积极影响。最后提出了目前盐渍化土壤团聚体及其有机碳研究存在的问题和不足,并对未来的研究方向和热点进行了展望,为全面了解盐渍化土壤团聚体研究的最新成果和发展方向提供参考。
魏守才, 谢文军, 夏江宝, 梁爱珍. 盐渍化条件下土壤团聚体及其有机碳研究进展[J]. 应用生态学报, 2021, 32(1): 369-376.
WEI Shou-cai, XIE Wen-jun, XIA Jiang-bao, LIANG Ai-zhen. Research progress on soil aggregates and associated organic carbon in salinized soils[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 369-376.
[1] Amundson R, Berhe AA, Hopmans JW, et al. Soil science: Soil and human security in the 21st century. Science, 2015, 348: 1261071 [2] Qadir M, Tubeileh A, Javaid A, et al. Productivity enhancement of salt-affected environments through crop diversification. Land Degradation & Development, 2008, 19: 429-453 [3] Sun H, Lu H, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 2017, 575: 820-825 [4] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845 [Yang J-S. Development and prospect of the research on salt-affected soils in China. Acta Pedologica Sinica, 2008, 45(5): 837-845] [5] Liu L, Long X, Shao H, et al. Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China. Ecological Engineering, 2015, 81: 328-334 [6] Zhang T, Wang T, Liu K, et al. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agricultural Water Management, 2015, 159: 115-122 [7] Mandal UK, Warrington DN, Bhardwaj AK, et al. Eva-luating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma, 2008, 144: 189-197 [8] Yu J, Wang Z, Meixner FX, et al. Biogeochemical characterizations and reclamation strategies of saline sodic soil in northeastern China. Clean-Soil Air Water, 2010, 38: 1010-1016 [9] Six J, Elliott ET, Paustian K. Soil structure and soil organic matter. Ⅱ. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 2000, 64: 1042-1049 [10] Yang Y, Sheng Q, Zhang L, et al. Desalination of saline farmland drainage water through wetland plants. Agricultural Water Management, 2015, 156: 19-29 [11] 王峻, 薛永, 潘剑君, 等. 耕作和秸秆还田对土壤团聚体有机碳及其作物产量的影响. 水土保持学报, 2018, 32(5): 121-127 [Wang J, Xue Y, Pan J-J, et al. Effects of tillage and straw incorporation on sequestration of organic carbon and crop yields. Journal of Soil and Water Conservation, 2018, 32(5): 121-127] [12] Bai Y, Xue W, Yan Y, et al. The challenge of improving coastal mudflat soil: Formation and stability of organo-mineral complexes. Land Degradation & Development, 2018, 29: 1074-1080 [13] Liang A, Mclaughlin NB, Zhang X, et al. Short-term effects of tillage practices on soil aggregate fractions in a Chinese mollisol. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2011, 61: 535-542 [14] Zhang Y, Li X, Gregorich EG, et al. No-tillage with continuous maize cropping enhances soil aggregation and organic carbon storage in Northeast China. Geoderma, 2018, 330: 204-211 [15] Peng X, Zhu Q, Zhang Z, et al. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biology & Biochemistry, 2017, 109: 81-94 [16] 王超, 姜坤, 卢瑛, 等. 不同有机物料施用对砖红壤团聚体组成和稳定性的影响. 土壤通报, 2019, 50(6): 1328-1334 [Wang C, Jiang K, Lu Y, et al. Effects of different organic material application on aggregate composition and stability of Latosol. Chinese Journal of Soil Science, 2019, 50(6): 1328-1334] [17] Yu H, Ding W, Luo J, et al. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biology and Fertility of Soils, 2012, 48: 325-336 [18] 陈文超, 朱安宁, 张佳宝, 等. 保护性耕作对潮土团聚体组成及其有机碳含量的影响. 土壤, 2014, 46(1): 35-40 [Chen W-C, Zhu A-N, Zhang J-B, et al. Effects of conservation tillage on the composition and organic carbon content of soil aggregates in Fluvo-aquic soil. Soils, 2014, 46(1): 35-40] [19] An S, Mentler A, Mayer H, et al. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010, 81: 226-233 [20] 王文鑫, 王文龙, 郭明明, 等. 黄土高塬沟壑区植被恢复对沟头土壤团聚体特征及土壤可蚀性的影响. 中国农业科学, 2019, 52(16): 2845-2857 [Wang W-X, Wang W-L, Guo M-M, et al. Effects of natural vegetation restoration on characteristics of soil aggregate and soil erodibility of gully heads in gully region of the Loess Plateau. Scientia Agricultura Sinica, 2019, 52(16): 2845-2857] [21] Bronick CJ, Lal R. Soil structure and management: A review. Geoderma, 2005, 124: 3-22 [22] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 2004, 79: 7-31 [23] Upton RN, Bach EM, Hofmockel KS. Spatio-temporal microbial community dynamics within soil aggregates. Soil Biology & Biochemistry, 2019, 132: 58-68 [24] Abiven S, Menasseri S, Chenu C. The effects of organic inputs over time on soil aggregate stability: A literature analysis. Soil Biology & Biochemistry, 2009, 41: 1-12 [25] 卢金伟, 李占斌. 土壤团聚体研究进展. 水土保持研究, 2002, 9(1): 81-85 [Lu J-W, Li Z-B. Advance in soil aggregate study. Research of Soil and Water Conservation, 2002, 9(1): 81-85] [26] 董莉丽. 基于Citespace的土壤团聚体研究热点和趋势分析. 咸阳师范学院学报, 2020, 35(2): 48-56 [Dong L-L. Hotspots and trends of soil aggregation research based on Citespace. Journal of Xianyang Normal University, 2020, 35(2): 48-56] [27] 窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418 [Dou S, Li K, Guan S. A review on organic matter in soil aggregates. Acta Pedologica Sinica, 2011, 48(2): 412-418] [28] 张延, 梁爱珍, 张晓平, 等. 土壤团聚体对有机碳物理保护机制研究. 土壤与作物, 2015, 4(2): 85-90 [Zhang Y, Liang A-Z, Zhang X-P, et al. Progress in soil aggregates physical conservation mechanism for organic carbon. Soils and Crops, 2015, 4(2): 85-90] [29] 沈晓琳, 王丽丽, 汪洋, 等. 保护性耕作对土壤团聚体、微生物及线虫群落的影响研究进展. 农业资源与环境学报, 2020, 37(3): 361-370 [Shen X-L, Wang L-L, Wang Y, et al. Progress on the effects of conservation tillage on soil aggregates, microbes, and nematode communities. Journal of Agricultural Resources and Environment, 2020, 37(3): 361-370] [30] 王纯, 陈晓旋, 陈优阳, 等. 水盐梯度对闽江河口湿地土壤水稳性团聚体分布及稳定性的影响. 环境科学学报, 2019, 39(9): 3117-3125 [Wang C, Chen X-X, Chen Y-Y, et al. Effects of hydrologic and salinity gradients on the distribution and stability of wetland soil water-stable aggregates in the Min River estuary. Acta Scientiae Circumstantiae, 2019, 39(9): 3117-3125] [31] Ishiguro M, Nakajima T. Hydraulic conductivity of an allophanic andisol leached with dilute acid solutions. Soil Science Society of America Journal, 2000, 64: 813-818 [32] Totsche KU, Amelung W, Gerzabek MH, et al. Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 2018, 181: 104-136 [33] Huang X, Li H, Li S, et al. Role of cationic polarization in humus-increased soil aggregate stability. European Journal of Soil Science, 2016, 67: 341-350 [34] Tedeschi A, Dellaquila R. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agricultural Water Mana-gement, 2005, 77: 308-322 [35] Haynes RJ, Beare MH. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biology & Biochemistry, 1997, 29: 1647-1653 [36] Lal R. Restoring soil quality to mitigate soil degradation. Sustainability, 2015, 7: 5875-5895 [37] Thompson LR, Sanders JG, Mcdonald D, et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature, 2017, 551: 457-463 [38] Barea JM, Pozo MJ, Azcon R, et al. Microbial co-opera-tion in the rhizosphere. Journal of Experimental Botany, 2005, 56: 1761-1778 [39] Wilson GWT, Rice CW, Rillig MC, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 2009, 12: 452-461 [40] Cong P, Ouyang Z, Hou R, et al. Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils. Soil & Tillage Research, 2017, 168: 33-41 [41] Rabbi SMF, Minasny B, Mcbratney AB, et al. Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma, 2020, 360: 114033 [42] Emran M, Doni S, Macci C, et al. Susceptible soil organic matter, SOM, fractions to agricultural management practices in salt-affected soils. Geoderma, 2020, 366: 114257 [43] Kohler J, Caravaca F, Roldan A. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biology & Biochemistry, 2010, 42: 429-434 [44] Rath KM, Fierer N, Murphy DV, et al. Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 2019, 13: 836-846 [45] Wichern J, Wichern F, Joergensen RG. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma, 2006, 137: 100-108 [46] Liu M, Wang C, Wang F, et al. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Applied Soil Ecology, 2019, 142: 147-154 [47] Luo S, Wang S, Tian L, et al. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma, 2018, 329: 108-117 [48] 马宏秀, 张开祥, 孟春梅, 等. 棉粕对盐渍化土壤团聚体中交换性盐基离子的影响. 西南农业学报, 2018, 31(7): 1411-1417 [Ma H-X, Zhang K-X, Meng C-M, et al. Effect of cottonseed meal on exchange base cations in salinization soil aggregates. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1411-1417] [49] 孟春梅, 王开勇, 张开祥, 等. 棉粕对不同类型盐渍化土壤团聚体中碳氮含量的影响. 江苏农业学报, 2019, 35(2): 307-312 [Meng C-M, Wang K-Y, Zhang K-X, et al. Effect of cottonseed meal on carbon and nitrogen contents in different types of salt-affected soil aggregates. Jiangsu Journal of Agricultural Sciences, 2019, 35(2): 307-312] [50] 侯亚玲, 周蓓蓓, 王全九, 等. 枯草芽孢杆菌对盐碱土水分运动和水稳性团聚体的影响. 水土保持学报, 2017, 31(4): 105-111 [Hou Y-L, Zhou P-P, Wang Q-J, et al. Effects of Bacillus subtilis on water movement and water stable aggregate in saline alkali soil. Journal of Soil and Water Conservation, 2017, 31(4): 105-111] [51] Imbufe AU, Patti AF, Burrow D, et al. Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma, 2005, 125: 321-330 [52] Mbagwu JSC, Piccolo A. Changes in soil aggregate stability induced by amendment with humic substances. Soil Technology, 1989, 2: 49-57 [53] Chi CM, Zhao C, Sun X, et al. Reclamation of saline-sodic soil properties and improvement of rice (Oriza sativa L.) growth and yield using desulfurized gypsum in the west of Songnen Plain, Northeast China. Geoderma, 2012, 187: 24-30 [54] Al-Maliki S, Ebreesum H. Changes in soil carbon mine-ralization, soil microbes, roots density and soil structure following the application of the arbuscular mycorrhizal fungi and green algae in the arid saline soil. Rhizosphere, 2020, 14: 100203 [55] Kim Y, Choo B, Cho J. Effect of gypsum and rice straw compost application on improvements of soil quality during desalination of reclaimed coastal tideland soils: Ten years of long-term experiments. Catena, 2017, 156: 131-138 [56] 鄂玉联, 谭兰兰, 安梦洁, 等. 高分子化合物对盐渍化棉田土壤团聚体组成及棉花产量的影响. 南方农业学报, 2017, 48(11): 1989-1993 [E Y-L, Tan L-L, An M-J, et al. Effects of polymer compounds on soil aggregate composition and cotton yield in salted cotton field. Journal of Southern Agriculture, 2017, 48(11): 1989-1993] [57] 候晓静, 杨劲松, 赵曼, 等. 耕作方式对滨海盐渍土有机碳含量及团聚体特性的影响. 土壤, 2015, 47(4): 781-789 [Hou X-J, Yang J-S, Zhao M, et al. Effects of tillage on soil organic carbon and stability of soil aggregates in costal saline soil region. Soils, 2015, 47(4): 781-789] [58] 金雯晖, 杨劲松, 侯晓静, 等. 轮作模式对滩涂土壤有机碳及团聚体的影响. 土壤, 2016, 48(6): 1195-1201 [Jin W-H, Yang J-S, Hou X-J, et al. Effects of rotation systems on soil organic carbon and aggregates in light salinized farmland in north Jiangsu Province. Soils, 2016, 48(6): 1195-1201] [59] Zhang F, Yang H, Gale WJ, et al. Temporal changes in soil organic carbon and aggregate-associated organic carbon after reclamation of abandoned, salinized farmland. Journal of Agricultural Science, 2017, 155: 205-215 [60] 李建国, 赵宴青, 袁冯伟, 等. 滨海滩涂围垦对土壤团聚体分布及其有机碳富集的影响——以江苏省如东县垦区为例. 土壤通报, 2018, 49(3): 552-559 [Li J-G, Zhao Y-Q, Yuan F-W, et al. The impact of reclamation on soil aggregates and organic carbon enrichment in coastal areas: A case study in Rudong County, Jiangsu Province. Chinese Journal of Soil Science, 2018, 49(3): 552-559] [61] 朱源山, 王义东, 郭长城, 等. 天津盐碱化沼泽湿地开垦对土壤团聚体有机与无机碳含量的影响. 生态学杂志, 2020, 39(1): 206-216 [Zhu Y-S, Wang Y-D, Guo C-C, et al. Effects of long-term reclamation on soil organic and inorganic carbon contents of aggregates in a saline wetland in Tianjin. Chinese Journal of Ecology, 2020, 39(1): 206-216] [62] 王卫超, 冯欢, 王巍琦, 等. 开垦对盐渍化弃耕地土壤团聚体含量及稳定性的影响. 土壤通报, 2016, 47(2): 327-333 [Wang W-C, Feng H, Wang W-Q, et al. Change in content and characteristics of soil aggregates after reclamation of derelict salinized land. Chinese Journal of Soil Science, 2016, 47(2): 327-333] [63] 闫靖华, 张凤华, 谭斌, 等. 不同恢复年限对土壤有机碳组分及团聚体稳定性的影响. 土壤学报, 2013, 50(6): 1183-1190 [Yan J-H, Zhang F-H, Tan B, et al. Effects of reclamation history of deserted salinization farmlands on organic carbon composition and aggregate stability of the soils. Acta Pedologica Sinica, 2013, 50(6): 1183-1190] [64] 刘星, 吴华勇, 杨升, 等. 海涂围垦区不同耐盐树种根际土壤团聚体形成及养分分布特征. 土壤学报, 2020, 57(5): 1270-1279 [Liu X, Wu H-Y, Yang S, et al. Formation of soil aggregates and distribution of soil nutrients in rhizosphere of salt-tolerant trees in coastal polder reclamation. Acta Pedologica Sinica, 2020, 57(5): 1270-1279] [65] Cheng Z, Wang J, Gale WJ, et al. Soil aggregation and aggregate-associated organic carbon under typical natural halophyte communities in arid saline areas of Northwest China. Pedosphere, 2020, 30: 236-243 [66] Xu X, Schaeffer SM, Sun Z, et al. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil & Tillage Research, 2020, 199: 104593 [67] 王双磊, 刘艳慧, 宋宪亮, 等. 棉花秸秆还田对土壤团聚体有机碳及氮磷钾含量的影响. 应用生态学报, 2016, 27(12): 3944-3952 [Wang S-L, Liu Y-H, Song X-L, et al. Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potassium contents in soil aggregates. Chinese Journal of Applied Ecology, 2016, 27(12): 3944-3952] [68] El HB, Saad AEAH, Aziz L. Short-term effect of organic residue incorporation on soil aggregate stability along gradient in salinity in the lower Cheliff Plain (Algeria). African Journal of Agricultural Research, 2013, 8: 2144-2152 [69] 王会, 何伟, 段福建, 等. 秸秆还田对盐渍土团聚体稳定性及碳氮含量的影响. 农业工程学报, 2019, 35(4): 124-131 [Wang H, He W, Duan F-J, et al. Effects of straw returning on saline soil aggregate stability and its carbon, nitrogen contents. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 124-131] [70] 何瑞成, 吴景贵, 李建明. 不同有机物料对原生盐碱地水稳性团聚体特征的影响. 水土保持学报, 2017, 31(3): 310-316 [He R-C, Wu J-G, Li J-M. Effects of different organic materials on the characteristics of water stable aggregates in a primary saline alkali soil. Journal of Soil and Water Conservation, 2017, 31(3): 310-316] [71] Xie W, Chen Q, Wu L, et al. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil & Tillage Research, 2020, 198: 104535 [72] Huang M, Zhang Z, Zhai Y, et al. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy, 2019, 9: 457 [73] Panta S, Flowers TJ, Doyle RB, et al. Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environmental and Experimental Botany, 2016, 128: 39-50 [74] Ju Z, Du Z, Guo K, et al. Irrigation with freezing saline water for 6 years alters salt ion distribution within soil aggregates. Journal of Soils and Sediments, 2019, 19: 97-105 [75] Li C, Lei J, Zhao Y, et al. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert highway shelterbelt. Soil & Tillage Research, 2015, 146: 99-107 [76] 刘兴华, 章海波, 李远, 等. 黄河三角洲滩涂-湿地-旱地土壤团聚体有机质组分变化规律. 土壤学报, 2019, 56(2): 374-385 [Liu X-H, Zhang H-B, Li Y, et al. Variation of organic matter in soil aggregates with the succession of tidal flatland from barren land-saltmarsh-upland in the Yellow River Delta. Acta Pedologica Sinica, 2019, 56(2): 374-385] [77] 李媛媛, 朱源山, 郭长城, 等. 津冀3个盐渍化沼泽湿地土壤团聚体有机碳的分布特征. 天津师范大学学报: 自然科学版, 2019, 39(6): 51-61 [Li Y-Y, Zhu Y-S, Guo C-C, et al. Distribution characteristics of organic carbon in soil aggregates of three saline marsh wetlands in Tianjin and Hebei Area. Journal of Tianjin Normal University: Natural Science, 2019, 39(6): 51-61] [78] Poeplau C, Reiter L, Berti A, et al. Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilisation regimes. Soil Research, 2016, 55: 1-9 [79] 马雪莹, 叶思源, 丁玉荣, 等. 辽河三角洲湿地土壤团聚体、颗粒有机质及其碳浓度分布特征. 中国农学通报, 2014, 30(34): 171-177 [Ma X-Y, Ye S-Y, Ding Y-R, et al. Aggregation, particulate organic matter and its soil carbon distribution of the wetland soil in Liaohe Delta. Chinese Agricultural Science Bulletin, 2014, 30(34): 171-177] [80] 朱梅珂, 孔范龙, 李悦, 等. 不同水盐条件下胶州芦苇盐沼土壤水稳性团聚体的室内模拟实验研究. 湿地科学, 2019, 17(2): 228-236 [Zhu M-K, Kong F-L, Li Y, et al. Indoor simulated experiment on soil water-stable aggregates in Phragmites australis saltmarsh in Jiaozhou under different soil moistures and salinities. Wetland Science, 2019, 17(2): 228-236] [81] Zheng L, Zhang M, Xiao R, et al. Impact of salinity and Pb on enzyme activities of a saline soil from the Yellow River Delta: A microcosm study. Physics and Chemistry of the Earth, 2017, 97: 77-87 [82] Xiao R, Zhang M, Yao X, et al. Heavy metal distribution in different soil aggregate size classes from restored brackish marsh, oil exploitation zone, and tidal mud flat of the Yellow River Delta. Journal of Soils and Sediments, 2016, 16: 821-830 [83] 傅勇. “海水稻”开启智慧农业巨大想象空间. 品牌研究, 2019(17): 20-21 [Fu Y. “Sea Rice” opens up huge imagination space for smart agriculture. Journal of Brand Research, 2019(17): 20-21] |
[1] | 张羽涵, 李瑶, 周玥, 陈圆佳, 安韶山. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征 [J]. 应用生态学报, 2024, 35(3): 639-647. |
[2] | 卢国伟, 王琦璇, 杨继松, 孙丹丹, 王志康, 周迪, 管博, 于君宝, 宁凯. 黄河三角洲稻田退耕还湿对土壤团聚体组成及稳定性的影响 [J]. 应用生态学报, 2024, 35(3): 705-712. |
[3] | 谢京瑾, 许秋月, 何敏, 夏允, 范跃新, 杨柳明. 中亚热带森林更新方式对土壤团聚体磷组分的影响 [J]. 应用生态学报, 2024, 35(2): 330-338. |
[4] | 于淼, 郭雪莲, 栗云召, 张昆, 杜朝红. 黄河口咸淡水交互作用对芦苇湿地土壤有机碳空间分异的影响 [J]. 应用生态学报, 2024, 35(2): 415-423. |
[5] | 杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展 [J]. 应用生态学报, 2024, 35(1): 111-123. |
[6] | 申继凯, 黄懿梅, 黄倩, 徐凤璟. 黄土高原不同植被类型土壤微生物残体碳的积累及其对有机碳的贡献 [J]. 应用生态学报, 2024, 35(1): 124-132. |
[7] | 贾娟, 李星奇, 冯晓娟. 排水对我国两种典型湿地土壤有机碳微生物转化过程的影响 [J]. 应用生态学报, 2024, 35(1): 133-140. |
[8] | 覃振凯, 刘润红, 何鹏, 王聪, 聂彦霞, 申卫军. 马尾松纯林混交改造对土壤微生物残体碳和有机碳组分的影响 [J]. 应用生态学报, 2024, 35(1): 141-152. |
[9] | 胡建文, 刘常富, 勾蒙蒙, 陈会玲, 雷蕾, 肖文发, 朱粟锋, 斛如媛. 林龄对马尾松人工林微生物残体碳积累的影响机制 [J]. 应用生态学报, 2024, 35(1): 153-160. |
[10] | 张羽涵, 李瑶, 周玥, 刘春晖, 安韶山. 宁南山区不同恢复年限柠条林地土壤微生物残体碳沿剖面分布特征 [J]. 应用生态学报, 2024, 35(1): 161-168. |
[11] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[12] | 王翠娟, 刘小飞, 杨柳明, 贾淑娴. 中亚热带米槠人工林土壤微生物残体碳对凋落物和根系碳输入的响应 [J]. 应用生态学报, 2024, 35(1): 177-185. |
[13] | 张雯怡, 姜振辉, 潘丽霞, 周家树, 刘娟, 蔡延江, 李永夫. 玉米秸秆及其生物质炭输入对毛竹林土壤有机碳化学组分与碳降解功能基因的影响 [J]. 应用生态学报, 2023, 34(9): 2383-2390. |
[14] | 姜静宜, 孙晓新, 王宪伟, 王淑洁, 马国宝, 陈宁, 杜宇. 大兴安岭多年冻土泥炭地土壤水可溶性有机碳夏秋季节变化特征及其影响因素 [J]. 应用生态学报, 2023, 34(9): 2413-2420. |
[15] | 陈浈雄, 张超, 李全, 宋新章, 施曼. 土壤有机碳分解温度敏感性的影响机制研究进展 [J]. 应用生态学报, 2023, 34(9): 2575-2584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||