应用生态学报 ›› 2021, Vol. 32 ›› Issue (3): 1112-1118.doi: 10.13287/j.1001-9332.202103.026
杨北方1,2, 杨国正2, 冯璐1, 韩迎春1, 雷亚平1, 范正义1, 王占彪1, 李亚兵1*
收稿日期:
2020-08-13
接受日期:
2020-12-20
出版日期:
2021-03-15
发布日期:
2021-09-15
通讯作者:
* E-mail: criliyabing@163.com
作者简介:
杨北方, 男, 1986年生, 硕士。主要从事棉花智能化栽培方面的研究。E-mail: yangbf8002@163.com
基金资助:
YANG Bei-fang1,2, YANG Guo-zheng2, FENG Lu1, HAN Ying-chun1, LEI Ya-ping1, FAN Zheng-yi1, WANG Zhan-biao1, LI Ya-bing1*
Received:
2020-08-13
Accepted:
2020-12-20
Online:
2021-03-15
Published:
2021-09-15
Contact:
* E-mail: criliyabing@163.com
Supported by:
摘要: 棉花是世界上最主要的农作物之一。随着全球水资源的日益紧张,灌溉用水将成为限制棉花生产的主要因素。亏缺灌溉是一种低于作物正常腾发量的灌溉方式,可以在保证棉花产量和品质的前提下提高水分利用效率,是一种有效的节水灌溉方式。本文综述了亏缺灌溉对棉花生长和水分利用效率的影响。亏缺灌溉可以通过促进棉花由营养生长向生殖生长转化,降低棉花株高、叶面积、总生物量,从而提高收获指数、茎粗和水分利用效率。最后,综合现有的研究,结合棉花生产实际,提出亏缺灌溉应用推广建议,以期为旱区棉花可持续发展提供理论指导。
杨北方, 杨国正, 冯璐, 韩迎春, 雷亚平, 范正义, 王占彪, 李亚兵. 亏缺灌溉对棉花生长和水分利用效率的影响研究进展[J]. 应用生态学报, 2021, 32(3): 1112-1118.
YANG Bei-fang, YANG Guo-zheng, FENG Lu, HAN Ying-chun, LEI Ya-ping, FAN Zheng-yi, WANG Zhan-biao, LI Ya-bing. Effects of deficit irrigation on cotton growth and water use efficiency: A review[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1112-1118.
[1] | 毛树春, 李付广. 当代全球棉花产业. 北京: 中国农业出版社, 2016: 6 [Mao S-C, Li F-G. Contemporary World Cotton. Beijing: China Agriculture Press, 2016: 6] |
[2] | 马有绚, 张武, 张立祯. 近30年我国棉花需水特征. 应用生态学报, 2016, 27(5): 1541-1552 [Ma Y-X, Zhang W, Zhang L-Z. Cotton water requirement character during recent 30 years in China. Chinese Journal of Applied Ecology, 2016, 27(5): 1541-1552] |
[3] | Godfray HCJ, Beddington JR, Crute IR, et al. Food security: The challenge of feeding 9 billion people. Science, 2010, 327: 812-818 |
[4] | Vicente-Serrano SM, Begueria S, Lorenzo-Lacruz J, et al. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 2012, 16: 1-27 |
[5] | Wang RS, Kang YH, Wan SQ, et al. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area. Agricultural Water Management, 2011, 100: 58-69 |
[6] | Zhang Z, Tian F, Hu H, et al. A comparison of methods for determining field evapotranspiration: Potosynthesis system, sap flow, and eddy covariance. Hydrology and Earth System Sciences, 2014, 18: 1053-1072 |
[7] | 曹伟, 马英杰, 张胜江, 等. 干旱区棉花畦灌非充分灌溉技术研究——以新疆尉犁县为例. 节水灌溉, 2012(8): 4-7 [Cao W, Ma Y-J, Zhang S-J, et al. Study on deficit irrigation technology for cotton border irrigation in arid area: Taking Yuli County as an example. Water Saving Irrigation, 2012(8): 4-7] |
[8] | 艾孜·艾里, 米热阿依·吾拉木. 喀什噶尔河流域水资源用水水平及存在问题探析. 地下水, 2019, 41(3): 129-130, 144 [Aizi A-L, Mireayi WLM. Water use level and existing problems in Kashgar River Basin. Ground Water, 2019, 41(3): 129-130, 144] |
[9] | Baker JT, Gitz DC, Stout JE, et al. Cotton water use efficiency under two different deficit irrigation scheduling methods. Agronomy-Basel, 2015, 5: 363-373 |
[10] | Zwart SJ, Bastiaanssen WGM. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 2004, 69: 115-133 |
[11] | Kirda C, Kanber R, Tulucu K, et al. Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation// Kirda C, Moutonnet P, Hera C, eds. Crop Yield Response to Deficit Irrigation. Boston, MA, USA: Kluwer Academic Publication, 1999: 21-38 |
[12] | Shangguan ZP, Shao MA, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environmental and Experimental Botany, 2000, 44: 141-149 |
[13] | Zhang DM, Luo Z, Liu SH, et al. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research, 2016, 197: 1-9 |
[14] | Kang SZ, Zhang JH. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. Journal of Experimental Botany, 2004, 55: 2437-2446 |
[15] | Chai Q, Gan YT, Zhao C, et al. Regulated deficit irrigation for crop production under drought stress: A review. Agronomy for Sustainable Development, 2016, 36, doi: 10.1007/s13593-015-0338-6 |
[16] | Pereira LS, Oweis T, Zairi A. Irrigation management under water scarcity. Agricultural Water Management, 2002, 57: 175-206 |
[17] | Unlu M, Kanber R, Koc DL, et al. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a Mediterranean environment. Agricultural Water Management, 2011, 98: 597-605 |
[18] | Howell TA, Evett SR, Tolk JA, et al. Evapotranspiration of full-, deficit-irrigated, and dryland cotton on the northern Texas high plains. Journal of Irrigation and Drainage Engineering, 2004, 130: 277-285 |
[19] | Wen YJ, Darapuneni MK, Chen DH, et al. Phenotypical responses of cotton and relation to lint yield under deficit irrigation schemes in semi-arid environments. Agronomy Journal, 2018, 110: 1339-1353 |
[20] | Chen ZK, Niu YP, Zhao RH, et al. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. Agricultural Water Management, 2019, 218: 139-148 |
[21] | Dagdelen N, Basal H, Yilmaz E, et al. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management, 2009, 96: 111-120 |
[22] | Ertek A, Kanber Rz. Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton. Agricultural Water Management, 2003, 60: 1-11 |
[23] | Kang YH, Wang RS, Wan SQ, et al. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China. Agricultural Water Management, 2012, 109: 117-126 |
[24] | Wanjura DF, Upchurch DR, Mahan JR, et al. Cotton yield and applied water relationships under drip irrigation. Agricultural Water Management, 2002, 55: 217-237 |
[25] | Chai Q, Gan YT, Turner NC, et al. Water-saving innovations in Chinese agriculture. Advances in Agronomy, 2014, 126: 149-201 |
[26] | Chalmers DJ, Vandenende B. Productivity of peach trees: Factors affecting dry-weight distribution during tree growth. Annals of Botany, 1975, 39: 423-432 |
[27] | Caradus JR, Snaydon RW. Plant factors influencing phosphorus uptake by white clover from solution culture. 3. Reciprocal grafting. Plant and Soil, 1986, 93: 175-181 |
[28] | 谭国波, 赵立群, 张丽华, 等. 玉米苗期调亏技术的研究. 吉林农业科学, 2009, 34(1): 3-4, 42 [Tan G-B, Zhao L-Q, Zhang L-H, et al. Researches on regulated deficit irrigation at seeding stage of maize. Journal of Jilin Agricultural Sciences, 2009, 34(1): 3-4, 42] |
[29] | Zhang BC, Li FM, Huang GB, et al. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agricultural Water Management, 2006, 79: 28-42 |
[30] | Zhan DX, Zhang C, Yang Y, et al. Water deficit alters cotton canopy structure and increases photosynthesis in the mid-canopy layer. Agronomy Journal, 2015, 107: 1947-1957 |
[31] | Xu HL, Qin F, Xu Q, et al. Applications of xerophytophysiology in plant production: The potato crop improved by partial root zone drying of early season but not whole season. Scientia Horticulturae, 2011, 129, doi: 10.1016/j.scenta.2011.04.016 |
[32] | Yang CJ, Luo Y, Sun L, et al. Effect of deficit irrigation on the growth, water use characteristics and yield of cotton in arid Northwest China. Pedosphere, 2015, 25: 910-924 |
[33] | 孟兆江, 卞新民, 刘安能, 等. 棉花调亏灌溉的生理响应及其优化农艺技术. 农业工程学报, 2007, 23(12): 80-84 [Meng Z-J, Bian X-M, Liu A-N, et al. Physiological responses of cotton to regulated deficit irrigation and its optimized agronomic techniques. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(12): 80-84] |
[34] | Paredes P, Pereira LS, Rodrigues GC, et al. Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies. Agricultural Water Management, 2017, 189: 5-18 |
[35] | Iqbal MA, Shen Y, Stricevic R, et al. Evaluation of the FAO aqua crop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 2014, 135: 61-72 |
[36] | Howell TA, Evett SR, Tolk JA, et al. Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the US southern high plains. Agricultural Water Management, 2015, 162: 33-46 |
[37] | 刘素华, 彭延, 彭小峰, 等. 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响. 棉花学报, 2016, 28(2): 184-188 [Liu S-H, Peng Y, Peng X-F, et al. Effects of regulated deficit irrigation and plant density on plant growth and yield and fiber quality of cotton in dry land area. Cotton Science, 2016, 28(2): 184-188] |
[38] | Luo Z, Liu H, Li W, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018, 218: 150-157 |
[39] | Perez-Pastor A, Ruiz-Sanchez MC, Domingo R. Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agricultural Water Management, 2014, 134: 110-118 |
[40] | Shahnazari A, Liu FL, Andersen MN, et al. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Research, 2007, 100: 117-124 |
[41] | Mao LL, Zhang LZ, Zhao XH, et al. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Research, 2014, 155: 67-76 |
[42] | 罗振, 辛承松, 李维江, 等. 部分根区灌溉与合理密植对旱区棉花产量和水分生产率的影响. 应用生态学报, 2019, 30(9): 3137-3146 [Luo Z, Xin C-S, Li W-J, et al. Effects of partial root-zone irrigation and rational close planting on yield and water productivity of cotton in arid area. Chinese Journal of Applied Ecology, 2019, 30(9): 3137-3146] |
[43] | Tang LS, Li Y, Zhang JH. Biomass allocation and yield formation of cotton under partial rootzone irrigation in arid zone. Plant and Soil, 2010, 337: 413-423 |
[44] | Du TS, Kang SZ, Zhang JH, et al. Yield and physiologi-cal responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agricultural Water Management, 2006, 84: 41-52 |
[45] | Falkenberg NR, Piccinni G, Cothren JT, et al. Remote sensing of biotic and abiotic stress for irrigation management of cotton. Agricultural Water Management, 2007, 87: 23-31 |
[46] | Du TS, Kang SZ, Zhang JH, et al. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrigation Science, 2008, 26: 147-159 |
[47] | 占东霞, 张超, 张亚黎, 等. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献. 作物学报, 2015, 41(12): 1880-1887 [Zhan D-X, Zhang C, Zhang Y-L, et al. Photosynthetic characteristics after flowering and contribution of non-leaf green organs of cotton to yield under mulching-drip irrigation with water deficiency. Acta Agronomica Sinica, 2015, 41(12): 1880-1887] |
[48] | Yao HS, Zhang YL, Yi XP, et al. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Research, 2015, 184: 39-49 |
[49] | 范志超, 张巨松, 石俊毅, 等. 调亏灌溉对滴灌棉花光合生产的调节补偿效应. 西北农业学报, 2017, 26(10): 1461-1469 [Fan Z-C, Zhang J-S, Shi J-Y, et al. Effect of soil water content on photosynthetic and yield of drip irrigation in cotton under regulated deficit irrigation. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(10): 1461-1469] |
[50] | Feng L, Bufon VB, Mills CI, et al. Effects of irrigation and plant density on cotton within-boll yield components. Agronomy Journal, 2010, 102: 1032-1036 |
[51] | Feng L, Mathis G, Ritchie G, et al. Optimizing irrigation and plant density for improved cotton yield and fiber quality. Agronomy Journal, 2014, 106: 1111-1118 |
[52] | Ibragimov N, Evett SR, Esanbekov Y, et al. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management, 2007, 90: 112-120 |
[53] | Chen YZ, Dong HZ. Mechanisms and regulation of senescence and maturity performance in cotton. Field Crops Research, 2016, 189: 1-9 |
[54] | Karam F, Lahoud R, Masaad R, et al. Water use and lint yield response of drip irrigated cotton to the length of irrigation season. Agricultural Water Management, 2006, 85: 287-295 |
[55] | 张冬梅, 张艳军, 李存东, 等. 论棉花轻简化栽培. 棉花学报, 2019, 31(2): 163-168 [Zhang D-M, Zhang Y-J, Li C-D, et al. On light and simplified cotton cultivation. Cotton Science, 2019, 31(2): 163-168] |
[56] | 董合忠, 张艳军, 张冬梅, 等. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51(24): 4615-4624 [Dong H-Z, Zhang Y-J, Zhang D-M, et al. New grouped harvesting-based population structures of cotton. Scientia Agricultura Sinica, 2018, 51(24): 4615-4624] |
[57] | Conaty WC, Mahan JR, Neilsen JE, et al. The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Research, 2015, 183: 329-341 |
[58] | Papastylianou PT, Argyrokastritis IG. Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agricultural Water Management, 2014, 142: 127-134 |
[59] | Zhao D, Oosterhuis DM. Cotton responses to shade at different growth stages: Growth, lint yield and fibre quality. Experimental Agriculture, 2000, 36: 27-39 |
[60] | 冯淑萍. 影响棉花纤维品质的主要因素. 中国棉花加工, 2012(4): 30-31 [Feng S-P. Main factors affecting cotton fiber quality. China Cotton Processing, 2012(4): 30-31] |
[61] | Pettigrew WT. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Science, 2001, 41: 1108-1113 |
[62] | Read JJ, Reddy KR, Jenkins JN. Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy, 2006, 24: 282-290 |
[63] | Pettigrew WT. Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agronomy Journal, 2004, 96, doi: 10.2134/agronj2004.0377 |
[64] | Yazar A, Sezen SM, Sesveren S. LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey. Agricultural Water Management, 2002, 54: 189-203 |
[65] | 白岩, 毛树春, 田立文, 等. 新疆棉花高产简化栽培技术评述与展望. 中国农业科学, 2017, 50(1): 38-50 [Bai Y, Mao S-C, Tian L-W, et al. Advances and prospects of high-yielding and simplified cottoncultivation technology in Xinjiang cotton-growing area. Scientia Agricultura Sinica, 2017, 50(1): 38-50] |
[66] | 孟兆江, 段爱旺, 王晓森, 等. 调亏灌溉对棉花根冠生长关系的影响. 农业机械学报, 2016, 47(4): 99-104 [Meng Z-J, Duan A-W, Wang X-S, et al. Effect of regulated deficit irrigation on growth relation of root and shoot in cotton. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 99-104] |
[67] | Luo Z, Kong XQ, Zhang YJ, et al. Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant Physiology, 2019, 180: 1660-1676 |
[1] | 王新, 董承光, 余渝, 马晓梅, 黄小芳, 田琴, 韦轩, 周小凤. 基于临界氮浓度的南疆滴灌棉花氮营养诊断及产量估算 [J]. 应用生态学报, 2023, 34(3): 688-698. |
[2] | 王筱迪, 张杰铭, 姜姜, 刘自强. 杉木水分利用效率对混交和气象因子的响应 [J]. 应用生态学报, 2023, 34(12): 3232-3238. |
[3] | 胡晓创, 高婉婷, 孙守家, 张劲松, 孟平, 蔡金峰. 刺槐生长和内在水分利用效率对气候因子的响应 [J]. 应用生态学报, 2023, 34(10): 2610-2618. |
[4] | 李民青, 周乐, 王喜勇, 康晓珊, 李从娟, 刘冉. 7种荒漠木本植物枝干与叶片光合特征及其影响因素 [J]. 应用生态学报, 2023, 34(10): 2637-2643. |
[5] | 高福洁, 崔鸿娇, 韩丙芳, 贺彦玲, 彭文栋, 刘定鑫, 伏兵哲, 马红彬. 亏缺灌溉对干旱区两种乡土植物种子生产性能及其水分利用效率的影响 [J]. 应用生态学报, 2022, 33(9): 2379-2387. |
[6] | 钱必长, 赵晨, 赵继浩, 赖华江, 李向东, 刘兆新. 不同花生棉花间作模式对花生生育后期生理特性及产量的影响 [J]. 应用生态学报, 2022, 33(9): 2422-2430. |
[7] | 张永娥, 赵阳, 路伟伟, 余新晓, 张晓明, 王昭艳, 刘冰, 辛艳. CO2浓度和土壤含水量对植物个体尺度短期水分利用效率的影响 [J]. 应用生态学报, 2022, 33(6): 1505-1510. |
[8] | 崔茜琳, 何云玲, 李宗善. 青藏高原植被水分利用效率时空变化及与气候因子的关系 [J]. 应用生态学报, 2022, 33(6): 1525-1532. |
[9] | 郭大港, 李菲, 高晓东, 何娜娜, 赵西宁. CO2浓度增加和水分亏缺对典型绿肥植物光合性能及水分利用效率的影响 [J]. 应用生态学报, 2022, 33(4): 995-1002. |
[10] | 田金园, 袁凤辉, 关德新, 吴家兵, 王安志. 长白山阔叶红松林5种主要树种水分利用效率与叶片养分特征 [J]. 应用生态学报, 2022, 33(2): 304-310. |
[11] | 李蕾, 汪旭明, Rudi Schäufele, 蔡炳贵, 巩晓颖. 聚四氟乙烯塑料管研磨法对测定C4植物碳同位素比值的影响 [J]. 应用生态学报, 2021, 32(6): 1963-1970. |
[12] | 陈丽楠, 刘秀春, 孙占祥, 荣传胜, 周晏起, 束良佐. 交替根区滴灌下不同施氮量对葡萄干物质积累、分配和产量的影响 [J]. 应用生态学报, 2021, 32(5): 1807-1815. |
[13] | 田金园, 刁浩宇, 袁凤辉, 关德新, 吴家兵, 王安志. 长白山阔叶红松林演替序列水分利用效率特征 [J]. 应用生态学报, 2021, 32(4): 1221-1229. |
[14] | 方彦杰, 张绪成, 于显枫, 侯慧芝, 王红丽, 马一凡, 张国平, 雷康宁, 尹嘉德. 半干旱区立式深旋耕和有机无机肥配施对饲用玉米水分利用效率和产量的影响 [J]. 应用生态学报, 2021, 32(4): 1327-1336. |
[15] | 陈虹, 杨磊, 张凤华. 新疆长期棉花连作对土壤理化性状与线虫群落的影响 [J]. 应用生态学报, 2021, 32(12): 4263-4271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||