[1] Kohl L, Myers PA, Edwards KA, et al. Microbial inputs at the litter layer translate climate into altered organic matter properties. Global Change Biology, 2020, 27: 435-453 [2] 李新荣, 周海燕, 王新平, 等. 中国干旱沙区的生态重建与恢复: 沙坡头站60年重要研究进展综述. 中国沙漠, 2016, 36(2): 247-264 [3] Cotrufo MF, Wallenstein MD, Boot CM, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter. Global Change Biology, 2013, 19: 988-995 [4] 严海元, 辜夕容, 申鸿. 森林凋落物的微生物分解. 生态学杂志, 2010, 29(9): 1827-1835 [5] Kubartová A, Ranger J, Berthelin J, et al. Diversity and decomposing ability of saprophytic fungi from temperate forest litter. Microbial Ecology, 2009, 58: 98-107 [6] Bray SR, Kitajima K, Mack MC. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Bio-logy and Biochemistry, 2012, 49: 30-37 [7] Lauber CL, Strickland MS, Bradford MA, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 2008, 40: 2407-2415 [8] Li XR, Ma FY, Xiao HL, et al. Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. Journal of Arid Environments, 2004, 57: 1-16 [9] Li XR, Jia RL, Zhang ZS, et al. Hydrological response of biological soil crusts to global warming: A ten-year simulative study. Global Change Biology, 2018, 24: 4960-4971 [10] Hagemann U, Moroni MT. Moss and lichen decomposition in old-growth and harvested high-boreal forests estimated using the litterbag and minicontainer methods. Soil Biology and Biochemistry, 2015, 87: 10-24 [11] Giuliano B, Guido I, Ahmed M. Comparing chemistry and bioactivity of burned vs. decomposed plant litter: Different pathways but same result? Ecology, 2018, 99: 158-171 [12] Li H, Wu F, Yang W, et al. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 2016, 7: 27 [13] 张路, 王杰, 王向涛, 等. 不同恢复方式对退化高寒草甸土壤nifH和chiA微生物群落结构的影响. 应用生态学报, 2021, 32(12): 4349-4358 [14] 隆春艳. 不同土地利用类型下凋落物分解过程及其微生物学特征. 硕士论文. 武汉: 中国科学院武汉植物园, 2020 [15] Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44: 322-331 [16] 樊瑾, 李诗瑶, 杜雅仙, 等. 火电厂周边不同生物结皮细菌群落特征差异及其影响因素. 应用生态学报, 2021, 32(11): 4107-4118 [17] 王苗苗, 侯扶江. 草地凋落物分解的主要影响因素. 草业科学, 2012, 29(10): 1631-1637 [18] 李娜, 赵传燕, 郝虎, 等. 不同海拔条件下祁连山青海云杉林叶凋落物分解过程及养分的动态变化. 生态学报, 2021, 41(11): 4493-4502 [19] Philben M, Butler S, Billings SA, et al. Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues. Biogeoences, 2018, 15: 6731-6746 [20] Turetsky MR, Crow SE, Evans RJ, et al. Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. Journal of Ecology, 2008, 96: 1297-1305 [21] Fenton NJ, Bergeron Y, Paré D. Decomposition rates of bryophytes in managed boreal forests: Influence of bryophyte species and forest harvesting. Plant and Soil, 2010, 336: 499-508 [22] Schneider T, Keiblinger KM, Schmid E, et al. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME Journal, 2012, 6: 1749-1762 [23] Baldrian P, Jana V, Petra D, et al. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant and Soil, 2011, 338: 111-125 [24] Voriskova J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. The ISME Journal, 2013, 7: 477-486 [25] Scheibe A, Steffens C, Seven J, et al. Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology and Biochemistry, 2015, 81: 219-227 [26] Strickland MS, Osburn E, Lauber C, et al. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Func-tional Ecology, 2009, 23: 627-636 [27] 董学德, 高鹏, 李腾, 等. 土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响. 生态学报, 2021, 41(6): 2315-2325 [28] Baumann K, Glaser K, Mutz JE, et al. Biological soil crusts of temperate forests: Their role in P cycling. Soil Biology and Biochemistry, 2017, 109: 156-166 [29] 宋新章, 江洪, 余树全, 等. 中亚热带森林群落不同演替阶段优势种凋落物分解试验. 应用生态学报, 2009, 20(3): 537-542 [30] Viles HA. Understanding dryland landscape dynamics: Do biological crusts hold the key? Geography Compass, 2008, 2: 899-919 [31] Li Z, Tian D, Wang B, et al. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 2019, 25: 1078-1088 [32] 王涛, 万晓华, 程蕾, 等. 杉木采伐迹地营造阔叶树种对土壤微生物生态化学计量特征的影响. 应用生态学报, 2020, 31(11): 3851-3858 [33] 洪小敏, 魏强, 李梦娇, 等. 亚热带典型森林地上和地下凋落物输入对土壤新老有机碳动态平衡的影响.应用生态学报, 2021, 32(3): 825-835 [34] Rousk J, Baath E, Brookes PC, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4: 1340-1351 |