[1] Donald PF. Society for conservation biology biodiversity impacts of some agricultural commodity production systems. Conservation Biology, 2004, 18: 17-37 [2] Wu HM, Xia JS, Qin XJ, et al. Underlying mechanism of wild Radix pseudostellariae in tolerance to disease under the natural forest cover. Frontiers in Microbiology, 2020, 11: 1142-1151 [3] 荆淑芹, 姜海平, 刘凤云, 等. 生晒参红参林下参中7种人参皂苷含量的比较. 中华中医药学刊, 2009, 27(1): 207-209 [4] Ye C, Fang HY, Liu HJ, et al. Current status of soil sickness research on Panax notoginseng in Yunnan, China. Allelopathy Journal, 2019, 47: 1-14 [5] 邓琳梅, 杨蕾, 张俊星, 等. 云南省不同森林土壤中三七促生拮抗细菌的分离筛选. 南方农业学报, 2020, 51(1): 115-122 [6] Tang C. Factors affecting soil acidification under legumes. I. Effect of potassium supply. Plant and Soil, 1998, 199: 275-282 [7] Xiang J, Ryan HV, Peng S, et al. Improvement in nitrogen availability, nitrogen uptake and growth of aerobic rice following soil acidification. Soil Science and Plant Nutrition, 2010, 55: 705-714 [8] Wei W, Yang M, Liu Y, et al. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Science of the Total Environment, 2018, 633: 796-807 [9] Yang M, Chuan Y, Guo C, et al. Panax notoginseng root cell death caused by the autotoxic ginsenoside Rg1 is due to over-accumulation of ROS, as revealed by trans-criptomic and cellular approaches. Frontiers in Plant Science, 2018, 28: 264 [10] Liu HJ, Yang M, Zhu SS. Strategies to solve the problem of soil sickness of Panax notoginseng (family: Araliaceae). Allelopathy Journal, 2019, 47: 37-56 [11] Dai Z, Zhang X, Tang C, et al. Potential role of biochars in decreasing soil acidification: A critical review. Science of the Total Environment, 2017, 581: 601-611 [12] Saing Z, Ibrahim MH, Irianto. Experimental investigation on strength improvement of lateritic Halmahera soil using quicklime stabilization. The 3rd International Conference on Civil and Environmental Engineering (ICCEE 2019), Bali, Indonesia, 2019: 419: 012013 [13] Xun W, Zhao J, Xue C, et al. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology, 2016, 18: 1907-1917 [14] 乔鈜元, 盛月凡, 王海燕, 等. 生石灰与过磷酸钙混施对连作土壤的改良效果及平邑甜茶幼苗生长的影响. 中国果树, 2020(3): 16-22 [15] Bai Y, Wang G, Cheng Y, et al. Soil acidification in continuously cropped tobacco alters bacterial community structure and diversity via the accumulation of phenolic acids. Scientific Reports, 2019, 9: 12499 [16] Abdalmoula MM, Makineci E, Özturna AG, et al. Soil organic carbon accumulation and several physicochemical soil properties under stone pine and maritime pine plantations in coastal dune, Durusu-Istanbul. Geoderma, 2019, 191: 312 [17] De Falco G, Magni P, TerSvuori LMH, et al. Sediment grain size and organic carbon distribution in the Cabras lagoon (Sardinia, Western Mediterranean). Chemistry and Ecology, 2004, 20: 367-377 [18] Tkaczyk P, Bednarek W, Dresler S, et al. The effect of some soil physicochemical properties and nitrogen ferti-lisation on winter wheat yield. Acta Agrophysica, 2018, 25: 107-116 [19] Chakraborty S, Weindorf DC, Zhu Y, et al. Spectral reflectance variability from soil physicochemical properties in oil contaminated soils. Geoderma, 2012, 177: 80-89 [20] Supapong P, Rungruang L, Phairat R, et al. Soil physicochemical properties related to the presence of Burkholderia pseudomallei. Royal Society of Tropical Medicine and Hygiene, 2008, 102: 5-9 [21] Souto C, Pellissier F, Chiapusio G. Allelopathic effects of humus phenolics on growth and respiration of mycorrhizal fungi. Journal of Chemical Ecology, 2000, 26: 2015-2023 [22] Xiao H, Wang B, Lu S, et al. Soil acidification reduces the effects of short-term nutrient enrichment on plant and soil biota and their interactions in grasslands. Global Change Biology, 2020, 26: 4626-4637 [23] 淡俊豪, 齐绍武, 黎娟, 等. 生石灰对酸性土壤pH值及微生物群落功能多样性的影响. 西南农业学报, 2017, 30(12): 2739-2745 [24] 周武先, 何银生, 朱盈徽, 等. 生石灰和钙镁磷肥对酸化川党参土壤的改良效果. 应用生态学报, 2019, 30(9): 3224-3232 [25] Schrijver AD, Frenne PD, Staelens J, et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Global Change Biology, 2012, 18: 1127-1140 [26] 王志康, 徐子恒, 陈紫云, 等. 有机肥和解磷固氮菌配施对缺碳黄棕壤养分特性的协同效应. 应用生态学报, 2020, 31(10): 3413-3423 [27] 杨敏, 和明东, 段杰, 等. 生物炭对连作烤烟根际土壤酚酸类物质及微生物群落结构的影响. 福建农业学报, 2020, 35(1): 107-114 [28] 涂玉婷, 黄继川, 彭智平, 等. 生物炭对酚酸胁迫下番茄生长和土壤微生态的影响. 广东农业科学, 2021, 48(1): 94-103 [29] Zhou X, Wu F. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific Reports, 2018, 8: 4929 [30] Heijden M, Wagg C. Soil microbial diversity and agro-ecosystem functioning. Plant and Soil, 2013, 363: 1-5 [31] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康. 中国科学: 生命科学, 2021, 51(1): 1-11 [32] Saleem M, Hu J, Jousset A. More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution and Systematics, 2019, 50: 145-168 [33] Beimforde C, Feldberg K, Nylinder S, et al. Estimating the phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 2014, 78: 386-398 [34] 萨如拉, 杨恒山, 邰继承, 等. 秸秆还田条件下腐熟剂对不同质地土壤真菌多样性的影响. 中国生态农业学报, 2020, 28(7): 121-131 [35] Ward NL, Challacombe JF, Janssen PH, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology, 2009, 75: 2046-2056 [36] Wei M, Xu C, Xu X, et al. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Science of the Total Environment, 2018, 651: 2727-2739 [37] Coppotelli BM, Ibarrolaza A, Panno M, et al. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil. Microbial Ecology, 2008, 55: 173-183 |