[1] Stanley SW, Pierre C. Soil erosion rates: Myth and rea-lity. Science, 2000, 289: 248-250 [2] 赵文武, 傅伯杰, 吕一河, 等. 多尺度土地利用与土壤侵蚀. 地理科学进展, 2006, 25(1): 24-33 [3] 魏慧, 赵文武, 王晶. 土壤可蚀性研究述评. 应用生态学报, 2017, 28(8): 2749-2759 [4] Ritchie JC, McHenry JR. Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality, 1990, 19: 215-233 [5] 郑永春, 王世杰, 欧阳自远. 地球化学示踪在现代土壤侵蚀研究中的应用. 地理科学进展, 2002, 21(5): 507-516 [6] 杨明义, 田均良, 石辉, 等. 核分析技术在土壤侵蚀研究中的应用. 水土保持研究, 1997, 4(2): 100-112 [7] Fang HJ, Yang XM, Zhang XP, et al. Using 137Cs tracer technique to evaluate erosion and deposition of black soil in northeast China. Pedosphere, 2006, 16: 201-209 [8] 汪亚峰, 傅伯杰, 陈利顶, 等. 黄土丘陵小流域土地利用变化的土壤侵蚀效应: 基于137Cs示踪的定量评价. 应用生态学报, 2009, 20(7): 1571-1576 [9] Froidevaux P, Steinmann P, Pourcelot L. Long-term and long-range migration of radioactive fallout in a Karst system. Environmental Science & Technology, 2010, 44: 8479-8484 [10] Duffa C, Renaud P. 238Pu and 239+240Pu inventory and distribution through the lower Rhone valley terrestrial environment (Southern France). Science of the Total Environment, 2005, 348: 164-172 [11] Mietelski JW, Was B. Plutonium from Chernobyl in Poland. Applied Radiation and Isotopes, 1995, 46: 1203-1211 [12] Turner M, Rudin M, Cizdziel J, et al. Excess plutonium in soil near the Nevada Test Site, USA. Environmental Pollution, 2003, 125: 193-203 [13] Ketterer M, Hafer KM, Mietelski JW. Resolving Chernobyl vs. global fallout contributions in soils from Poland using plutonium atom ratios measured by inductively coupled plasma mass spectrometry. Journal of Environmental Radioactivity, 2004, 73: 183-201 [14] Hardy EP, Krey PW, Volchok HL. Global inventory and distribution of fallout plutonium. Nature, 1973, 241: 444-445 [15] United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. New York: United Nations, 2000: 214-215 [16] 徐仪红. 辽东湾沿岸土壤中钚同位素的分布特征及其土壤侵蚀示踪研究. 博士论文. 南京: 南京大学, 2014 [17] Lee MH, Lee CW, Hong KH, et al. Depth distribution of 239,240Pu and 137Cs in soils of South Korea. Journal of Radioanalytical and Nuclear Chemistry, 1996, 204: 135-144 [18] Zheng J, Yamada M, Wu FC, et al. Characterization of Pu concentration and its isotopic composition in soils of Gansu in northwestern China. Journal of Environmental Radioactivity, 2009, 100: 71-75 [19] Lujaniene G, Plukis A, Kimtys E, et al. Study of 137Cs, 90Sr, 239,240Pu, 238Pu and 241Am behavior in the Chernobyl soil. Journal of Radioanalytical and Nuclear Chemistry, 2002, 251: 59-68 [20] Xu YH, Qiao JX, Hou XL, et al. Plutonium in soils from Northeast China and its potential application for evaluation of soil erosion. Scientific Reports, 2013, 3: 3506 [21] 曾可, 周旭, 马特奇, 等. 连续提取法在钚与土壤结合形态研究中的应用现状. 核电子学与探测技术, 2012, 32(5): 528-534 [22] 施燕梅, 王旭辉, 张海涛, 等. 某地区土壤中241Am和239Pu的化学形态. 核化学与放射化学, 2007, 29(4): 248-252 [23] Druteikiene R, Luksiene B, Holm E. Migration of 239Pu in soluble and insoluble forms in soil. Journal of Radioanalytical and Nuclear Chemistry, 1999, 242: 731-737 [24] Zhang YS, Zheng J, Yamada M, et al. Characterization of Pu concentration and its isotopic composition in a reference fallout material. Science of the Total Environment, 2010, 408: 1139-1144 [25] Xu YH, Pan SM, Wu MM, et al. Association of plutonium isotopes with natural soil particles of different size and comparison with 137Cs. Science of the Total Environment, 2017, 581-582: 541-549 [26] 倪有意, 卜文庭, 郭秋菊, 等. 土壤中钚的迁移行为研究. 辐射防护, 2017, 37(1): 1-7 [27] Dong W, Zheng J, Guo QJ. Particle-size speciation of Pu isotopes in surface soils from Inner Mongolia (China) and its implications for Asian dust monitoring. Applied Radiation and Isotopes, 2017, 120: 133-136 [28] Menzel RG. Transport of 90Sr in runoff. Science, 1960, 131: 499-500 [29] Schimmack W, Auerswald K, Bunzl K. Can 239+240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout? Journal of Environmental Radioactivity, 2001, 53: 41-57 [30] Schimmack W, Auerswald K, Bunzl K. Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers. Naturwissenschaften, 2002, 89: 43-46 [31] Hoo WT, Fifield LK, Tims SG, et al. Using fallout plutonium as a probe for erosion assessment. Journal of Environmental Radioactivity, 2011, 102: 937-942 [32] Lal R, Tims SG, Fifield LK, et al. Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia. Nuclear Instruments and Methods in Physics Research, 2013, 294: 577-583 [33] Meusburger K, Mabit L, Ketterer M, et al. A multi-radionuclide approach to evaluate the suitability of 239+240Pu as soil erosion tracer. Science of the Total Environment, 2016, 566-567: 1489-1499 [34] Alewell C, Meusburger K, Juretzko G, et al. Suitability of 239,240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere, 2014, 103: 274-280 [35] Meusburger K, Porto P, Mabit L, et al. Excess lead-210 and plutonium-239+240: Two suitable radiogenic soil erosion tracers for mountain grassland sites. Environmental Research, 2018, 160: 195-202 [36] Xu YH, Qiao JX, Pan SM, et al. Plutonium as a tracer for soil erosion assessment in northeast China. Science of the Total Environment, 2015, 511: 176-185 [37] Zhang WC, Xing S, Hou XL. Evaluation of soil erosion and ecological rehabilitation in Loess Plateau region in Northwest China using plutonium isotopes. Soil and Tillage Research, 2019, 191: 162-170 [38] Xu YH, Pan SM, Gao JH, et al. Sedimentary record of plutonium in the North Yellow Sea and the response to catchment environmental changes of inflow rivers. Chemo-sphere, 2018, 207: 130-138 [39] Walling DE, He QP, Appleby PG. Conversion models for use in soil-erosion, soil-redistribution and sedimentation investigations// Zapata F, ed. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Dordrecht: Kluwer Academic publishers, 2002: 111-164 [40] Walling DE, Zhang YS, He QP. Conversion models and related software// International Atomic Energy Agency, ed. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. Vienna: International Atomic Energy Agency Publication, 2014: 125-148 [41] Walling DE, Quine TA. Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degradation and Development, 1990, 2: 161-175 [42] Iurian AR, Mabit L, Cosma C. Uncertainty related to input parameters of 137Cs soil redistribution model for undisturbed fields. Journal of Environmental Radioactivity, 2014, 136: 112-120 [43] Zhang XB, Higgitt DL, Walling DE. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrological Sciences Journal, 1990, 35: 243-252 [44] Zhang XB, Quine TA, Walling DE, et al. A study of soil erosion on a steep cultivated slop in the Mt. Gongga region near Luding, Sichuan, China, using the 137Cs technique. Acta Geologica Hispanica, 2000, 35: 229-238 [45] Yang H, Du MY, Zhao QG, et al. A quantitative model for estimating mean annual soil loss in cultivated land using 137Cs measurements. Soil Science and Plant Nutrition, 2000, 46: 69-79 [46] Yang H, Chang Q, Du MY, et al. Quantitative model of soil erosion rates using 137Cs for uncultivated soil. Soil Science, 1998, 163: 248-257 [47] Alewell C, Pitois A, Meusburger K, et al. 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth-Science Reviews, 2017, 172: 107-123 [48] Arata L, Meusburger K, Frenkel E, et al. Modelling Deposition and Erosion rates with RadioNuclides (MODERN)-Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides. Journal of Environmental Radioactivity, 2016, 162-163: 45-55 [49] Arata L, Alewell C, Frenkel E, et al. Modelling Deposition and Erosion rates with RadioNuclides (MODERN)-Part 2: A comparison of different models to convert 239+240Pu inventories into soil redistribution rates at unploughed sites. Journal of Environmental Radioactivity, 2016, 162-163: 97-106 [50] Qiao JX, Hansen V, Hou XL, et al. Speciation analysis of 129I, 137Cs, 232Th, 238U, 239Pu and 240Pu in environmental soil and sediment. Applied Radiation and Isotopes, 2012, 70: 1698-1708 [51] 郝永佩. 钚同位素在环境中的吸附与迁移行为特征及指示意义. 博士论文. 南京: 南京大学, 2019 [52] Hirose K, Kikawada Y, Igarashi Y, et al. Plutonium, 137Cs and uranium isotopes in Mongolian surface soils. Journal of Environmental Radioactivity, 2017, 166: 97-103 [53] Ryan JN, Illangasekare TH, Litaor MI, et al. Particle and plutonium mobilization in macroporous soils during rainfall simulations. Environmental Science & Technology, 1998, 32: 476-482 |