[1] Du ZY, Zhang XW, Liu SX, et al. Nitrogen and water addition alters species diversity and interspecific relationship in a desert grassland. Science of the Total Environment, 2024, 908: 168386 [2] Jin SS, Zhang YY, Zhou ML, et al. Interspecific association and community stability of tree species in natural secondary forests at different altitude gradients in the southern Taihang Mountains. Forests, 2022, 13: 373 [3] 陈倩, 陈杰, 钟娇娇, 等. 秦岭山地油松天然次生林灌木层主要种群种间联结性与功能群划分. 应用生态学报, 2018, 29(6): 1736-1744 [4] 刘雨婷, 侯满福, 贺露炎, 等. 滇东菌子山喀斯特森林群落乔木优势树种生态位和种间联结. 应用生态学报, 2023, 34(7): 1771-1778 [5] 张零念, 朱贵青, 杨宽, 等. 滇中云南杨梅灌丛主要木本植物生态位与种间联结. 植物生态学报, 2022, 46(11): 1400-1410 [6] 龚容, 高琼, 王亚林. 围封对温带半干旱典型草原群落种间关联的影响. 植物生态学报, 2016, 40(6): 554-563 [7] 彭梦, 黄城晨, 李立杰, 等. 长湖浮游植物优势种生态位特征及种间联结性分析. 生态学报, 2024, 44(4): 1549-1563 [8] 刘润红, 陈乐, 徐洪润, 等. 桂林岩溶石山青冈群落灌木层主要物种生态位与种间联结. 生态学报, 2020, 40(6): 2057-2071 [9] 杜忠毓, 邢文黎, 薛亮, 等. 喀斯特石漠化锑矿区植物群落主要物种生态位特征及其种间联结. 生态学报, 2023, 43(7): 2865-2880 [10] 周先叶, 王伯荪, 李鸣光, 等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析. 植物生态学报, 2000, 24(3): 332-339 [11] Zhu GX, Xiao HY, Guo QJ, et al. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety, 2018, 151: 266-271 [12] Li CH, Ji YK, Ma N, et al. Positive effects of vegetation restoration on the soil properties of post-mining land. Plant and Soil, 2023, 497: 93-103 [13] Liu J, Zhang SW, Li EW, et al. Effects of cubic ecolo-gical restoration of mining wasteland and the preferred restoration scheme. Science of the Total Environment, 2022, 851: 158155 [14] Deng JJ, Bai XJ, Zhou YB, et al. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Science of the Total Environment, 2020, 704: 135243 [15] 宋红艳, 孙彩丽, 柴宗政. 黔西北铅锌矿废渣场优势草本植物种群生态位及种间关系. 草地学报, 2022, 30(10): 2764-2771 [16] 郭英英, 李素清. 十八河铜尾矿库草本植物群落优势种种间关系. 中国水土保持科学, 2019, 17(4): 18-25 [17] 郭俊兵, 狄晓艳, 李素清. 山西大同矿区煤矸石山自然定居植物群落优势种种间关系. 生态学杂志, 2015, 34(12): 3327-3332 [18] 春风, 赵萌莉, 塞西亚拉图, 等. 内蒙古巴音华矿区自然定居植物群落优势种种间关系研究. 中国草地学报, 2017, 39(5): 90-95 [19] 李军, 彭传盈, 张成业, 等. 基于大样本的露天开采植被扰动范围一般性统计规律: 以神东煤炭基地为例. 煤炭学报, 2023, 48(2): 975-985 [20] 牛鸿波, 田少国, 祖鹏举, 等. 神东矿区煤炭开采对植被净初级生产力的影响[EB/OL]. (2023-10-18)[2024-04-10]. 煤炭科学技术, http://kns.cnki.net/kcms/detail/11.2402.td.20231017.1717.002.html [21] Pandey B, Agrawal M, Singh S. Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology, 2014, 23: 1474-1483 [22] Yuan XQ, Guo ZL, Wang SC, et al. Drivers and mecha-nisms of spontaneous plant community succession in abandoned Pb-Zn mining areas in Yunnan, China. Science of the Total Environment, 2023, 904: 166871 [23] Yang XM, Feng Q, Liu W, et al. Community structure and plant diversity under different degrees of restored grassland in mining areas of the Qilian Mountains, Northwestern China. Frontiers in Environmental Science, 2023, 11: 1191599 [24] 余元元, 黄宇妃, 宋波, 等. 南丹县矿区周边土壤与农产品重金属含量调查及健康风险评价. 环境化学, 2015, 34(11): 2133-2135 [25] 陆素芬, 张云霞, 余元元, 等. 广西南丹土壤-玉米重金属积累特征及其健康风险. 生态与农村环境学报, 2017, 33(8): 706-714 [26] Qi YT, Wei XD, Zhao MJ, et al. Heavy metal pollution characteristics and potential ecological risk assessment of soils around three typical antimony mining areas and watersheds in China. Frontiers in Environmental Science, 2022, 10: 913293 [27] 张宏, 谢磊, 汤静如, 等. 广西南丹地区重金属污染土壤修复对策研究. 环境科学与管理, 2016, 41(10): 58-61 [28] Zhang YX, Song B, Zhu LL, et al. Evaluation of the metal(loid)s phytoextraction potential of wild plants grown in three antimony mines in southern China. International Journal of Phytoremediation, 2021, 23: 781-790 [29] 徐传贵, 韦贵元, 党桂兰, 等. 广西南丹县药用植物资源调查与多样性研究. 中药材, 2024, 47(2): 308-312 [30] Anderson CG. The metallurgy of antimony. Geochemistry, 2012, 72: 3-8 [31] 贺忠权, 刘长成, 蔡先立, 等. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征. 植物生态学报, 2021, 45(6): 670-680 [32] 张金屯. 数量生态学. 第三版. 北京: 科学出版社, 2018: 107-123 [33] 刘益鹏, 叶兴状, 叶利奇, 等. 观光木群落优势树种生态位和种间联结. 应用生态学报, 2022, 33(10): 2670-2678 [34] 杜华栋, 宋世杰, 张勇, 等. 彬长矿区不同地表沉陷类型下植物群落特征. 生态学杂志, 2019, 38(5): 1520-1527 [35] Nardini A, Casolo V, Borgo AD, et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell & Environment, 2016, 39: 618-627 [36] Xu ZW, Ren HY, Li MH, et al. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 2015, 103: 1308-1316 [37] 刘润红, 常斌, 荣春艳, 等. 漓江河岸带枫杨群落主要木本植物种群生态位. 应用生态学报, 2018, 29(12): 3917-3926 [38] Su SJ, Liu ZS, He ZS, et al. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve. Journal of Mountain Science, 2015, 12: 637-646 [39] Cai ZJ, Wang BR, Zhang L, et al. Striking a balance between N sources: Mitigating soil acidification and accumulation of phosphorous and heavy metals from manure. Science of the Total Environment, 2021, 754: 142189 [40] Mohanraj R, Akil Prasath RV, Rajasekaran A. Assessment of vegetation, soil nutrient dynamics and heavy metals in the Prosopis juliflora invaded lands at semi-arid regions of Southern India. Catena, 2022, 216: 106374 [41] Naz M, Dai ZC, Hussain S, et al. The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 2022, 321: 115770 [42] 杨龙, 严令斌, 安明态, 等. 基于生态位理论的毛竹-桫椤群丛物种竞争共存机制. 应用生态学报, 2023, 34(8): 2065-2072 |