[1] Ji YD, Fu JY, Lu Y, et al. Three-dimensional-based global drought projection under global warming tendency. Atmospheric Research, 2023, 291: 106812 [2] Ding YB, He XF, Zhou ZQ, et al. Response of vegetation to drought and yield monitoring based on NDVI and SIF. Catena, 2022, 219: 106328 [3] 陈力, 王靖, 邱晓, 等. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究. 作物学报, 2023, 49(8): 2122-2132 [4] Challabathula D, Analin B, Mohanan A, et al. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Journal of Plant Physiology, 2022, 268: 153583-153597 [5] Sharma M, Kumar P. Role of secondary metabolites and phytohormones in drought stress tolerance.Journal of Food Processing and Preservation, 2021, 8: 1917-1946 [6] 丁凯鑫, 王立春, 田国奎, 等. 干旱胁迫下不同品种马铃薯块茎膨大期叶片对烯效唑的生理响应. 中国生态农业学报, 2023, 31(7): 1067-1080 [7] 蔺亚平, 杨成行, 苏家豪, 等. 6种高寒禾草对干旱胁迫的生理响应及抗旱性评价. 草业科学, 2021, 38(12): 2397-2405 [8] 马文涛, 樊卫国. 不同种类柑橘的抗旱性及其与内源激素变化的关系. 应用生态学报, 2014, 25(1): 147-154 [9] 王存. 多效唑在植物生产上的应用现状. 热带农业科学, 2009, 29(2): 67-72 [10] 耿小丽, 武慧娟, 付萍, 等. 叶面喷施多效唑、矮壮素、缩节胺对燕麦抗倒伏性和种子产量的调节作用. 草业科学, 2023, 40(9): 2340-2347 [11] Maheshwari C, Garg NK, Singh A, et al. Optimization of paclobutrazol dose for mitigation of water-deficit stress in rice (Oryza sativa L.). Biochemical Systematics and Ecology, 2023, 107: 104596-104606 [12] Moradi S, Baninasab B, Gholami M, et al. Paclobutrazol application enhances antioxidant enzyme activities in pomegranate plants affected by cold stress. The Journal of Horticultural Science and Biotechnology, 2017, 92: 65-71 [13] Percival GC, Noviss AK. Triazole induced drought tole-rance in horse chestnut (Aesculus hippocastanum). Tree Physiology, 2008, 28: 1685-1692 [14] Xiu W, Zhu YF, Chen B, et al. Effects of paclobutrazol on the physiological characteristics of Malus halliana Koehne seedlings under drought stress via principal component analysis and membership function analysis. Arid Land Research and Management, 2019, 33: 97-113 [15] 杨丽芝, 潘春霞, 邵珊璐, 等. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响. 生态学报, 2018, 38(6): 2082-2091 [16] 朱燕芳, 王延秀, 胡亚, 等. 多效唑对水分胁迫下苹果砧木八棱海棠光合及抗氧化酶活性等生理特性的影响. 干旱地区农业研究, 2018, 36(4): 178-186 [17] 肖建华, 丁鑫, 蔡超男, 等. 闽楠(Phoebe bournei Lauraceae)地理分布及随气候变化的分布格局模拟. 生态学报, 2021, 41(14): 5703-5712 [18] 陆云峰, 裴男才, 朱亚军, 等. 渐危植物浙江楠群落结构及叶片性状多样性. 应用生态学报, 2018, 29(7): 2101-2110 [19] 甘菲菲, 招礼军, 霍灿灿, 等. 光照和水分对四季米仔兰幼苗生长的影响. 应用生态学报, 2024, 35(2): 439-446 [20] 胡胜男, 王波, 李铁华, 等. 叶面喷施亚精胺对干旱胁迫下闽楠幼苗生理的影响. 西南林业大学学报: 自然科学, 2021, 41(6): 31-38 [21] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 第4版. 北京: 高等教育出版社, 2009: 54-60 [22] Zhao S, Yu JH. Effects of high temperature stress on the photosynthesis and osmoregulation substances of flag leaves in Oryza stavia L. ssp. javanica. Ecology and Environmental Sciences, 2013, 22: 110-115 [23] 罗杰, 周光良, 胡庭兴, 等. 干旱胁迫对润楠幼苗生长和生理生化指标的影响. 应用与环境生物学报, 2015, 21(3): 563-570 [24] 范志霞, 李绍才, 孙海龙. 多效唑作用下紫穗槐对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2017, 26(3): 132-141 [25] 曹翠玲, 杨力, 胡景江. 多效唑提高玉米幼苗抗旱性的生理机制研究. 干旱地区农业研究, 2009, 27(2): 153-158 [26] Zhang SB, Zhang JL, Cao KF. Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species. Plant Science Journal, 2016, 34: 117-126 [27] Xu W, Wuyun T, Chen J, et al. Responses of Trollius chinensis to drought stress and rehydration: From photosynthetic physiology to gene expression. Plant Physiology and Biochemistry, 2023, 201: 107841-107846 [28] Yu KK, Song XE, Gao H, et al. Effect of paclobutrazol on photosynthesis and chlorophyll fluorescence under different fertilization rates in potatoes. Journal of Nuclear Agricultural Sciences, 2016, 30: 154-163 [29] Kamran M, Ahmad S, Ahmad I, et al. Paclobutrazol application favors yield improvement of maize under semiarid regions by delaying leaf senescence and regulating photosynthetic capacity and antioxidant system during grain-filling stage. Agronomy, 2020, 10: 187-211 [30] Lukic N, Kukavica B, Davidovic-Plavsic B, et al. Plant stress memory is linked to high levels of anti-oxidative enzymes over several weeks. Environmental and Experimental Botany, 2020, 178: 104166 [31] 王慧, 王冬梅, 张泽洲, 等. 外源褪黑素对干旱胁迫下黑麦草和苜蓿抗氧化能力及养分吸收的影响. 应用生态学报, 2022, 33(5): 1311-1319 [32] 张海燕, 汪宝卿, 冯向阳, 等. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46(11): 1760-1770 [33] 吴雨涵, 刘文辉, 刘凯强, 等. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响. 草业学报, 2022, 31(10): 75-86 [34] Davari K, Rokhzadi A, Mohammadi K,et al. Paclobutrazol and amino acid-based biostimulant as beneficial compounds in alleviating the drought stress effects on safflower (Carthamus tinctorius L.). Journal of Soil Science and Plant Nutrition, 2022, 22: 674-690 [35] Mohan R, Kaur T, Bhat HA, et al. Paclobutrazol induces photochemical efficiency in mulberry (Morus alba L.) under water stress and affects leaf yield without influencing biotic interactions. Journal of Plant Growth Regulation, 2020, 39: 205-215 [36] 赵雷, 靳海笛, 曹晓云, 等. 六个东方铁筷子品种对干旱胁迫的生理响应及抗旱性评价. 应用生态学报, 2023, 34(10): 2644-2654 [37] Bao XY, Hou XY, Duan WW, et al. Screening and evaluation of drought resistance traits of winter wheat in the North China Plain. Frontiers in Plant Science, 2023, 14: 1194759 [38] 刘凯强, 刘文辉, 贾志锋, 等. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响. 草业学报, 2021, 30(3): 177-188 [39] Liu XX, Wang SW, Deng XP, et al. Comprehensive evaluation of physiological traits under nitrogen stress and participation of linolenic acid in nitrogen-deficiency response in wheat seedlings. BMC Plant Biology, 2020, 20: 501 [40] Liu CJ, Gong XW, Wang HL, et al. Low-nitrogen tole-rance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiology and Bioche-mistry, 2020, 151: 233-242 |