[1] Hoch G, Richter A, Krner C. Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 2003, 26: 1067-1081 [2] 王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应. 应用生态学报, 2017, 28(2): 399-407 [3] Chapin FS, Schulze E, Mooney HA. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 1990, 21: 423-447 [4] 王文娜, 李俊楠, 王会仁, 等. 不同树种叶片非结构性碳水化合物季节动态比较. 东北林业大学学报, 2014, 42(4): 46-49 [5] 王彪, 江源, 王明昌, 等. 芦芽山不同海拔白杄非结构性碳水化合物含量动态. 植物生态学报, 2015, 39(7): 746-752 [6] 马玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 2021, 32(2): 513-520 [7] 张豆, 景航, 王国梁. 人工油松林中不同植物叶片非结构性碳水化合物含量对氮添加的响应. 应用生态学报, 2019, 30(2): 489-495 [8] Peltier DMP, Guo J, Nguyen P, et al. Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. Tree Physiology, 2022, 42: 71-85 [9] 翟佳, 袁凤辉, 吴家兵. 植物物候变化研究进展. 生态学杂志, 2015, 34(11): 3237-3243 [10] Chamberlain CJ, Wolkovich EM. Late spring freezes coupled with warming winters alter temperate tree phenology and growth. New Phytologist, 2021, 231: 987-995 [11] Martínez V, Sala A, Asensio D, et al. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecological Monographs, 2016, 86: 495-516 [12] 李菊艳. 不同林龄胡杨组织非结构性碳水化合物含量变化规律. 干旱区资源与环境, 2021, 35(9): 185-192 [13] 杜建会, 邵佳怡, 李升发, 等. 树木非结构性碳水化合物含量多时空尺度变化特征及其影响因素研究进展. 应用生态学报, 2020, 31(4): 1378-1388 [14] Klein T, Vitasse Y, Hoch G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest. Tree Physiology, 2016, 36: 847-855 [15] 章异平, 曹鹏鹤, 徐军亮, 等. 秦岭东段栓皮栎叶片非结构性碳水化合物含量的季节动态. 生态学报, 2019, 39(19): 7274-7282 [16] Horowitz ME, Fahey TJ, Yavitt JB, et al. Patterns of late-season photosynthate movement in sugar maple saplings Canadian Journal of Forest Research. 2009, 39: 2294-2298 [17] Thalmann M, Santelia D. Starch as a determinant of plant fitness under abiotic stress. New Phytologist, 2017, 214: 943-951 [18] Furze ME, Huggett BA, Aubrecht DM, et al. Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species. New Phytologist, 2019, 221: 1466-1477 [19] 郑悦, 王爱英, 苏立新, 等. 沈阳市区不同环境下银杏水力特征和非结构性碳水化合物含量. 应用生态学报, 2022, 33(3): 711-719 [20] 王晓雨, 王守乐, 唐杨, 等. 长白山阔叶红松林3个主要树种的非结构性碳储存特征. 应用生态学报, 2019, 30(5): 1608-1614 [21] Duan BX, Man XL, Cai TJ, et al. Increasing soil organic carbon and nitrogen stocks along with secondary forest succession in permafrost region of the Daxing’an Mountains, northeast China. Global Ecology and Conservation, 2020, 24: e01258 [22] 赵旭. 北京典型乔木幼树非结构性碳的物候存储机制研究. 硕士论文. 沈阳: 沈阳农业大学, 2022 [23] 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配. 植物生态学报, 2011, 35(12): 1245-1255 [24] Guo DL, Mitchell RJ, Hendricks JJ. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 2004, 140: 450-457 [25] 陈立新. 土壤实验实习教程. 哈尔滨: 东北林业大学出版社, 2005 [26] Kozlowski TT. Carbohydrate sources and sinks in woody plants. The Botanical Review, 1992, 58: 107-222 [27] 李守剑, 宋贺, 王进闯, 等. 大气CO2浓度和温度升高对岷江冷杉(Abies faxoniana)幼苗针叶化学特性的影响. 应用与环境生物学报, 2012, 18(6): 1027-1032 [28] Koch KE, Wu Y, Xu J. Sugar and metabolic regulation of genes for sucrose metabolism: Potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. Journal of Experimental Botany, 1996, 47: 1179-1185 [29] 任洁, 王慧梅, 王文杰, 等. 温度升高对杨树树皮绿色组织和叶片光合作用、叶绿素荧光特性的影响. 植物研究, 2014, 34(6): 758-764 [30] 杨芳, 王振孟, 朱大海, 等. 常绿阔叶林林下 6 种木本植物叶片非结构性碳水化合物的动态特征. 应用与环境生物学报, 2019, 25(5): 1075-1083 [31] 赵镭, 杨海波, 王达力, 等. 浙江天童常见种幼苗的光合特性及非结构性碳水化合物储存. 华东师范大学学报: 自然科学版, 2011(4): 35-44 [32] 王彪, 江源, 王明昌, 等. 芦芽山不同海拔白杄非结构性碳水化合物含量动态. 植物生态学报, 2015, 39(7): 746-752 [33] 王玥琳, 徐大平, 杨曾奖, 等. 移植和钾肥对降香黄檀(Dalbergia odorifera)比叶面积和水分利用效率的影响. 分子植物育种, 2020, 18(1): 346-353 [34] Martinez-Vilalta J, Sala A, Asensio D, et al. Dynamics of non-structural carbohydrates in terrestrial plant: A global synthesis. Ecological Monographs, 2016, 86: 495-516 [35] Steven GC, Fox JF. The causes of tree line. Annual Review of Ecology and Systematics, 1991, 22: 177-191 [36] Schulze ED, Mooneyh HA, Dunn EL. Wintertime photosynthesis of bristlecone pine (Pinus aristata) in the White Mountains of California. Ecology, 1967, 48: 1044-1047 [37] Luo TX, Pan YD, Ouyang H, et al. Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Global Ecology and Biogeography, 2004, 13: 345-358 [38] 尹华军, 赖挺, 程新颖, 等. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 2008, 32(5): 1072-1083 [39] 全先奎, 王传宽. 兴安落叶松叶碳利用效率对环境变化的适应. 生态学报, 2016, 36(11): 3381-3390 [40] 翟培凤, 关家欣, 何鹏, 等. 沿干旱梯度樟子松人工林针叶和枝条非结构性碳水化合物及氮含量的变化. 应用生态学报, 2022, 33(6): 1518-1524 |