欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (7): 2121-2130.doi: 10.13287/j.1001-9332.202507.026

• 研究论文 • 上一篇    下一篇

黄河源园区归一化植被指数的时空格局与预测模型

刘薇1,2, 曹腾飞1,3*, 于福鑫1, 黄可乐1, 郑涵致1, 牛百成4   

  1. 1青海大学计算机技术与应用学院, 西宁 810016;
    2青海大学畜牧兽医科学院, 西宁 810016;
    3青海省媒体融合技术与传播重点实验室, 西宁 810099;
    4青海师范大学地理科学学院, 西宁 810008
  • 收稿日期:2024-12-16 接受日期:2025-05-13 出版日期:2025-07-18 发布日期:2026-01-18
  • 通讯作者: *E-mail: caotf@qhu.edu.cn
  • 作者简介:刘 薇, 女, 1993年生, 博士研究生。主要从事草地遥感与草地信息化研究。E-mail: liuwei@qhu.edu.cn
  • 基金资助:
    青海省应用基础研究项目(2024-ZJ-708)

Spatiotemporal pattern and prediction model of normalized difference vegetation index in the Yellow River Source Zone

LIU Wei1,2, CAO Tengfei1,3*, YU Fuxin1, HUANG Kele1, ZHENG Hanzhi1, NIU Baicheng4   

  1. 1School of Computer Technology and Application, Qinghai University, Xining 810016, China;
    2Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China;
    3Qinghai Provincial Key Laboratory of Media Integration Technology and Communication, Xining 810099, China;
    4College of Geographical Sciences, Qinghai Normal University, Xining 810008, China
  • Received:2024-12-16 Accepted:2025-05-13 Online:2025-07-18 Published:2026-01-18

摘要: 黄河源园区作为黄河流域生态安全的重要屏障,其生态功能对区域水源涵养、气候调节和生物多样性保护具有重要意义。本研究融合2000—2020年MODIS遥感影像、气象、水文和地形数据,运用Sen斜率法、偏相关性分析、方差膨胀因子分析、交互作用探测,以及随机森林及地理加权随机森林模型,全面剖析黄河源园区归一化植被指数(NDVI)的时空变化趋势、驱动机制并构建预测模型。结果表明: 2000—2020年,黄河源园区年NDVI以0.0028·a-1的速率显著上升,从0.3301增至0.3924,整体增长率达18.9%,空间分布呈现从西北向东南递增的规律。通过偏相关分析、方差膨胀因子筛选及地理探测器交互作用探测,发现风速、降水和最低气温是NDVI变化的主要驱动因子,各因子间存在交互关系,共同影响植被生长。地理加权随机森林模型(决定系数R2=0.976,均方根误差RMSE=0.017,平均绝对误差MAE=0.013)相较于随机森林模型(R2=0.465,RMSE=0.082,MAE=0.063),在揭示NDVI变化的空间异质性与局部驱动机制上表现更优,能为不同区域分配合理特征权重,有效提升预测精度。

关键词: 黄河源园区, 归一化植被指数, 地理加权随机森林, 空间异质性

Abstract: The Yellow River Source Zone is a critical ecological barrier for the Yellow River Basin, playing a vital role in regional water conservation, climate regulation and biodiversity protection. We integrated MODIS remote sensing images, meteorological, hydrological and terrain data from 2000-2020, used the methods including Sen slope method, partial correlation analysis, variance inflation factor analysis, interaction detection, as well as random forests and geographically weighted random forests models to comprehensively analyze the spatiotemporal variations and driving mechanisms of the normalized difference vegetation index (NDVI) in the Yellow River Source Zone and constructed a prediction model. The results showed that the annual NDVI of the zone increased significantly at a rate of 0.0028·a-1 from 2000 to 2020, rising from 0.3301 to 0.3924, with an overall growth rate of 18.9%. The spatial distribution exhibited an increasing trend from the northwest to the southeast. Through partial correlation analysis, variance inflation factor screening, and interaction detection using a geographical detector, we found that wind speed, precipitation, and minimum temperature were the main driving factors of NDVI changes. There were complex interaction relationships among these factors, jointly affecting vegetation growth. The geographically weighted random forest model (coefficient of determination, R2=0.976, root mean square error, RMSE=0.017, mean absolute error, MAE=0.013) outperformed the random forest model (R2=0.465, RMSE=0.082, MAE=0.063) in revealing the spatial heterogeneity and local driving mechanisms of NDVI changes. It could assign reasonable feature weights to different regions, effectively improving the prediction accuracy.

Key words: Yellow River Source Zone, normalized difference vegetation index, geographically weighted random forest, spatial heterogeneity