[1] 王宁, 张卫强, 黄芳芳, 等. 粤北南岭典型林分旱雨季冠层降水化学变化. 中国水土保持科学, 2024, 22(5): 83-92 [2] Liu XQ, Ma Q, Wu XY, et al. A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds. Remote Sensing of Environment, 2022, 282: 113280 [3] Kaiser E, Morales A, Harbinson J. Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiology, 2018, 176: 977-989 [4] Leakey AD, Uribelarrea M, Ainsworth EA, et al. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 2006, 140: 779-790 [5] Chazdon RL, Pearcy RW. Photosynthetic responses to light variation in rainforest species. Ⅱ. Carbon gain and photosynthetic efficiency during lightflecks. Oecologia, 1986, 69: 524-531 [6] Sassenrath-Cole GF, Pearcy RW. The role of ribulose-1,5-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. Plant Physiology, 1992, 99: 227-234 [7] Taylor SH, Gonzalez-Escobar E, Page R, et al. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. Nature Plants, 2022, 8: 118-124 [8] Wen Y, Zhang Y, Cheng R, et al. Photosynthetic induction of the leaves varies among pepper cultivars due to stomatal oscillation. Scientia Horticulturae, 2023, 318: 112126 [9] Shao B, Zhang Y, Vincenzi E, et al. Photosynthesis and photoprotection in top leaves respond faster to irra-diance fluctuations than bottom leaves in a tomato canopy. Journal of Experimental Botany, 2024, 75: 7217-7236 [10] Way DA, Pearcy RW. Sunflecks in trees and forests: From photosynthetic physiology to global change biology. Tree Physiology, 2012, 32: 1066-1081 [11] Scuffi D, Nietzel T, Di Fino LM, et al. Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling. Plant Physiology, 2018, 176: 2532-2542 [12] Aranda I, Pardo F, Gil L, et al. Anatomical basis of the change in leaf mass per area and nitrogen investment with relative irradiance within the canopy of eight temperate tree species. Acta Oecologica, 2004, 25: 187-195 [13] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345 [14] 李力, 张祥星, 郑睿, 等. 夏玉米光合特性及光响应曲线拟合. 植物生态学报, 2016, 40(12): 1310-1318 [15] Bauerle WL, McCullough C, Iversen M, et al. Leaf age and position effects on quantum yield and photosynthetic capacity in hemp crowns. Plants, 2020, 9: 271 [16] Niinemets Ü. Leaf age dependent changes in within-canopy variation in leaf functional traits: A meta-analysis. Journal of Plant Research, 2016, 129: 313-338 [17] Pan Y, Birdsey RA, Phillips OL, et al. The enduring world forest carbon sink. Nature, 2024, 631: 563-569 [18] 王笑影, 周玉科, 李荣平, 等. 冬季非均匀增温与积雪及光周期变化对温带植被物候影响研究进展. 地理科学进展, 2024, 43(8): 1666-1680 [19] 王宣璎, 张翼, 范秀华. 东北阔叶红松林4种树木幼苗光合荧光特征对氮添加的响应. 北京林业大学学报, 2024, 46(3): 69-79 [20] Chang Q, Xu W, Peng B, et al. Dynamic and allocation of recently assimilated carbon in Korean Pine (Pinus koraiensis) and Birch (Betula platyphylla) in a tempe-rate forest. Biogeochemistry, 2022, 160: 395-407 [21] 肖欢, 叶尔江·拜克吐尔汗, 张春雨, 等. 长白山阔叶红松林林层群落结构与生产力的关系. 林业科学, 2024, 60(3): 57-64 [22] Long SP, Bernacchi CJ. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, 54: 2393-2401 [23] 唐敬超, 史作民, 罗达, 等. 遮荫处理对灰木莲幼苗叶片光合氮利用效率的影响. 生态学报, 2017, 37(22): 7493-7502 [24] Hubbart S, Smillie IR, Heatley M, et al. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Communications Biology, 2018, 1: 22 [25] Durand M, Stangl ZR, Salmon Y, et al. Sunflecks in the upper canopy: Dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica. New Phytologist, 2022, 235: 1365-1378 [26] 龚伟, 宫渊波, 胡庭兴, 等. 湿地松幼树冠层光合作用日变化及其影响因素. 浙江林学院学报, 2006, 23(1): 29-34 [27] 理挪, 王培, 陈宇, 等. 不同叶龄杉木叶片形态及光合特性分析. 亚热带农业研究, 2018, 14(3): 167-171 [28] 杨克彤, 陈国鹏. 红豆杉幼树异龄叶的功能性状. 应用生态学报, 2022, 33(2): 329-336 [29] Bartley GE, Scolnik PA. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. The Plant Cell, 1995, 7: 1027 [30] 段爱国, 保尔江, 张建国, 等. 华山松不同叶龄、部位针叶叶绿素荧光参数的动态变化规律. 北京林业大学学报, 2008, 30(5): 26-32 [31] Aro EM, Virgin I, Andersson B. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta-Bioenergetics, 1993, 1143: 113-134 [32] Nishiyama Y, Allakhverdiev SI, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem Ⅱ. Biochimica et Biophysica Acta-Bioenergetics, 2006, 1757: 742-749 [33] Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 2008, 13: 178-182 [34] Terashima I, Hanba YT, Tazoe Y, et al. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. Journal of Experimental Botany, 2006, 57: 343-354 [35] Niinemets U. Photosynthesis and resource distribution through plant canopies. Plant, Cell & Environment, 2007, 30: 1052-1071 [36] Vico G, Manzoni S, Palmroth S, et al. Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytologist, 2011, 192: 640-652 [37] Woo HR, Kim HJ, Lim PO, et al. Leaf senescence: Systems and dynamics aspects. Annual Review of Plant Biology, 2019, 70: 347-376 [38] Pearcy RW. Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Biology, 1990, 41: 421-453 [39] 陈志成, 刘畅, 刘晓静, 等. 光强和树体大小对锐齿栎树木水、碳平衡的影响. 林业科学, 2017, 53(9): 18-25 [40] 张超男, 赵西平, 梁芳, 等. 蒙古栎树冠不同部位树枝的导管特征的变化. 林业科学, 2014, 50(10): 152-157 |