[1] Ni HJ, Su WH. Spatial distribution of fine root traits in relation to soil properties and aggregate stability of intensively managed Moso bamboo (Phyllostachys edulis) plantations in subtropical China. Plant and Soil, 2024, 498: 487-503 [2] Ni HJ, Su WH, Fan SH, et al. Effects of intensive management practices on rhizosphere soil properties, root growth, and nutrient uptake in Moso bamboo plantations in subtropical China. Forest Ecology and Management, 2021, 493: 119083 [3] 倪惠菁, 储昊煜, 苏文会, 等. 经营强度对毛竹林土壤团聚体稳定性和碳氮磷分布的影响. 应用生态学报, 2023, 34(4): 928-936 [4] He H, Peng MW, Lu WD, et al. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Science of the Total Environment, 2022, 851: 158132 [5] Ying D, Chen XL, Hou JF, et al. Soil properties and microbial functional attributes drive the response of soil multifunctionality to long-term fertilization management. Applied Soil Ecology, 2023, 192: 105095 [6] Liu JA, Shu AP, Song WF, et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma, 2021, 404: 115287 [7] Shao GD, Xu Y, Zhou J, et al. Enhanced soil organic carbon stability in rhizosphere through manure application. Soil and Tillage Research, 2024, 244: 106223 [8] Yang QY, Zhang MK. Effect of bio-organic fertilizers partially substituting chemical fertilizers on labile organic carbon and bacterial community of citrus orchard soils. Plant and Soil, 2023, 483: 255-272 [9] Wang CL, Ma YQ, He WH, et al. Soil quality and ecosystem multifunctionality after 13-year of organic and nitrogen fertilization. Science of the Total Environment, 2024, 931: 172789 [10] 陈晓萍, 谢亚军, 罗光恩, 等. 蚕沙有机肥的养分特性及其肥效. 应用生态学报, 2011, 22(7): 1803-1809 [11] 倪惠菁, 赵建诚, 杨振亚, 等. 蚕沙有机肥对雷竹林土壤理化性质和酶活性的影响. 东北林业大学学报, 2024, 52(9): 109-114 [12] 李苹, 付弘婷, 张发宝, 等. 蚕沙有机肥对作物产量、品质及土壤性质的影响. 南方农业学报, 2015, 46(7): 1195-1199 [13] 罗珍, 张宇亭, 申鸿, 等. 蚕沙发酵有机肥对烟草生长及其品质的影响. 蚕业科学, 2011, 37(4): 775-779 [14] 杨青山, 许凌峰, 郭冬琴, 等. 蚕沙发酵肥对连作延胡索产量和品质的影响. 蚕业科学, 2022, 48(1): 77-82 [15] Yang ZY, Zhao JC, Ni HJ. Silkworm excrement organic fertilizer substitution compound fertilizer improves bamboo shoot yield by altering soil properties and bacterial communities of Moso bamboo (Phyllostachys edulis) forests in subtropical China. Frontiers in Plant Science, 2025, 16: 1550946 [16] Zhang XP, Li QL, Zhong ZK, et al. Determining changes in microbial nutrient limitations in bamboo soils under different management practices via enzyme stoichio-metry. Catena, 2023, 223: 106939 [17] 陈浩宁, 周怀平, 文永莉, 等. 长期不同施肥下褐土养分及酶活性的生态化学计量特征. 植物营养与肥料学报, 2022, 28(6): 972-983 [18] Zheng L, Chen H, Wang YQ, et al. Responses of soil microbial resource limitation to multiple fertilization strategies. Soil and Tillage Research, 2020, 196: 104474 [19] 崔继文, 徐新朋, 何萍, 等. 氮素有机替代对东北黑土区土壤微生物碳磷资源限制的影响. 植物营养与肥料学报, 2020, 26(11): 1953-1966 [20] 吕凤莲, 梁凯霖, 吉冰洁, 等. 基于酶化学计量法探究有机无机肥配施调控果园土壤微生物碳、磷代谢机制. 环境科学, 2023, 44(10): 5788-5799 [21] 曾泉鑫, 张秋芳, 林开淼, 等. 酶化学计量揭示5年氮添加加剧毛竹林土壤微生物碳磷限制. 应用生态学报, 2021, 32(2): 521-528 [22] 臧逸飞, 郝明德, 张丽琼, 等. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5): 1445-1451 [23] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2016 [24] 关松荫. 土壤酶及其研究法. 北京: 中国农业出版社, 1986 [25] 林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010 [26] Zhang YL, Sun CX, Chen ZH, et al. Stoichiometric analyses of soil nutrients and enzymes in a Cambisol soil treated with inorganic fertilizers or manures for 26 years. Geoderma, 2019, 353: 382-390 [27] Wang JH, Wang XJ, Xu MG, et al. Crop yield and soil organic matter after long-term straw return to soil in China. Nutrient Cycling in Agroecosystems, 2015, 102: 371-381 [28] Chen QL, Ding J, Zhu D, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141: 107686 [29] Ning CC, Gao PD, Wang BQ, et al. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 2017, 16: 1819-1831 [30] 程琪, 毛霞丽, 孙涛, 等. 长期化肥与不同有机物料配施对土壤微生物生态化学计量特征和群落结构的影响. 植物营养与肥料学报, 2024, 30(2): 209-220 [31] 王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018, 38(11): 3848-3858 [32] 张冠华, 牛俊, 易亮, 等. 不同植茶年限土壤-微生物生物量碳氮磷化学计量特征. 应用生态学报, 2023, 34(4): 969-976 [33] 宋亚辉, 艾泽民, 乔磊磊, 等. 施肥对黄土高原农地土壤碳氮磷生态化学计量比的影响. 水土保持研究, 2019, 26(6): 38-45 [34] 杜映妮, 李天阳, 何丙辉, 等. 长期施肥和耕作下紫色土坡耕地土壤C、N、P和K化学计量特征. 环境科学, 2020, 41(1): 394-402 [35] 夏文建, 柳开楼, 张丽芳, 等. 长期施肥对红壤稻田土壤微生物生物量和酶活性的影响. 土壤学报, 2021, 58(3): 628-637 [36] 任凤玲, 张旭博, 孙楠, 等. 施用有机肥对中国农田土壤微生物量影响的整合分析. 中国农业科学, 2018, 51(1): 119-128 [37] 侯晓杰, 汪景宽, 李世朋. 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响. 生态学报, 2007, 27(2): 655-661 [38] Luo GW, Li L, Friman VP, et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, 2018, 124: 105-115 [39] Li J, Cooper JM, Lin Z, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 2015, 96: 7587 [40] Stone MM, Weiss MS, Goodale CL, et al. Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Global Change Biology, 2011, 18: 1173-1184 [41] Allison SD, Vitousek PM. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 2005, 37: 937-944 [42] 孙奔, 周运超, 邓梅, 等. 不同林龄油茶林土壤酶化学计量特征及微生物养分限制因素. 应用生态学报, 2024, 35(5): 1233-1241 [43] Sinsabaugh RL, Hill BH, Follstad Shah JJ. Ecoenzyma-tic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798 [44] Burns RG, DeForest JL, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58: 216-234 [45] 高瑞敏, 严君, 韩晓增, 等. 不同有机物料还田对白浆土土壤化学计量特征及胞外酶活性的影响. 干旱地区农业研究, 2024, 42(5): 198-205 [46] 吴丽芳, 王紫泉, 王妍, 等. 喀斯特高原不同石漠化程度土壤C、N、P化学计量特征和酶活性的关系. 生态环境学报, 2019, 28(12): 2332-2340 |