[1] 孙冬婧, 温远光, 罗应华等. 近自然化改造对杉木人工林物种多样性的影响. 林业科学研究, 2015, 28(2): 202-208 [Sun D-J, Wen Y-G, Luo Y-H, et al. Effects of close-to-natural management on species diversity in a Cunninghamia lanceolata plantation. Forest Research, 2015, 28(2): 202-208] [2] Li WH. Degradation and restoration of forest ecosystems in China. Forest Ecology and Management, 2004, 201: 33-41 [3] Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2012, 68: 4-9 [4] Egan G, Crawley MJ, Fornara DA. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Science of the Total Environment, 2018, 614: 810-819 [5] Almajmale A, Hardie M, Doyle R, et al. Influence of soil properties on the aggregate stability of cultivated sandy clay loams. Journal of Soil and Sediments, 2017, 17: 800-809 [6] 程欢, 宫渊波, 付雨欣, 等. 四川盆地西南缘不同林分类型土壤团聚体稳定性及有机碳组分特征. 水土保持学报, 2018, 32(5): 109-115 [Cheng H, Gong Y-B, Fu Y-X, et al. Soil aggregates stability and characteristics of organic carbon components in three different forests of the southwest edge of Sichuan basin. Journal of Soil and Water Conservation, 2018, 32(5): 109-115] [7] Zhao D, Xu MX, Liu GB, et al. Quantification of soil aggregate microstructure on abandoned cropland during vegetative succession using synchrotron radiation-based micro-computed tomography. Soil and Tillage Research, 2017, 165: 239-246 [8] Alagöz Z, Yilmaz E. Effects of different sources of organic matter on soil aggregate formation and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey. Soil and Tillage Research, 2009, 103: 419-424 [9] Wiesmeier M, Steffens M, Mueller CW, et al. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. European Journal of Soil Science, 2012, 63: 22-31 [10] 张芸, 李惠通, 魏志超, 等. 不同发育阶段杉木人工林土壤有机质特征及团聚体稳定性. 生态学杂志, 2016, 35(8): 2029-2037 [Zhang Y, Li H-T, Wei Z-C, et al. Soil organic matter characteristics and aggregate stability in different development stages of Chinese fir plantation. Chinese Journal of Ecology, 2016, 35(8): 2029-2037] [11] 汪思龙, 廖利平, 邓仕坚, 等. 杉楠混交与人工杉木林自养机制的恢复. 应用生态学报, 2000, 11(1): 34-37 [Wang S-L, Liao L-P, Deng S-J, et al. Mixing of Cunninghamia lanceolata with Michelia macclurei and restoration of self-sustaining mechanism in G. lanceolate plantation. Chinese Journal of Applied Ecology, 2000, 11(1): 34-37] [12] 康冰, 刘世荣, 张广军等. 广西大青山南亚热带马尾松、杉木混交林生态系统碳素积累和分配特征. 生态学报, 2006, 26(5): 1320-1329 [Kang B, Liu S-R, Zhang G-J, et al. Carbon accumulation and distribution in Pinus massoniana and Cunninghamia lanceolata mixed forest ecosystem in Daqingshan, Guangxi of China. Acta Ecologica Sinica, 2006, 26(5): 1320-1329] [13] Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability. Catena, 2003, 52: 1-8 [14] Eynard A, Schumacher TE, Lindstrom MJ, et al. Effects of aggregate structure and organic C on wettability of Ustolls. Soil & Tillage Research, 2006, 88: 205-216 [15] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 1999 [Lu R-K. Analytical Methods of Soil and Agricultural Chemistry. Beijing: China Agricultural Science Press, 1999] [16] An S, Mentler A, Mayer H, et al. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 2010, 81: 226-233 [17] 王春燕, 谢贤健, 周贵尧, 等. 巨桉人工林下土壤团聚体分形特征及碱解氮分布研究. 水土保持研究, 2015, 22(3): 88-92 [Wang C-Y, Xie X-J, Zhou G-Y, et al. Fractal features of soil aggregates and distribution of alkaline hydrolytic nitrogen in different types of Eucalyptus grandis plantations. Research of Soil and Water Conservation, 2015, 22(3): 88-92] [18] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79: 7-31 [19] 刘瑞强, 黄志群, 何宗明, 等. 根系去除对米老排和杉木凋落物分解的影响. 林业科学, 2015, 51(9): 1-8 [Liu R-Q, Huang Z-Q, He Z-M, et al. Effects of root removal on litter decomposition in plantations of Mytilaria laosensis and Cunninghamia lanceolata. Scienta Silvae Sinicae, 2015, 51(9): 1-8] [20] 汪凤林, 张月全, 陈爱玲, 等. 不同配比的杉木、火力楠凋落物中土壤酶活性的变化及其对凋落物分解的影响. 福建农林大学学报: 自然科学版, 2017, 46(5): 576-583 [Wang F-L, Zhang Y-Q, Chen A-L, et al. Enzyme activities of litter and soil and its effect on litter decomposition under different combinations of Cunninghamia lanceolata and Machelia macclurei. Journal of Fujian Agriculture and Forestry University: Natural Science, 2017, 46(5): 576-583] [21] Tisdall JM, Oades JM. Landmark. Organic matter and water-stable aggregates in soils. European Journal of Soil Science, 2012, 63: 8-21 [22] 王连晓, 史正涛, 刘新有, 等. 不同林龄橡胶林土壤团聚体分布特征及其稳定性研究. 浙江农业学报, 2016, 28(8): 1381-1388 [Wang L-X, Shi Z-T, Liu X-Y, et al. Study on composition and stability of soil aggregates under different ages-class rubber plantation. Acta Agriculture Zhejiangensis, 2016, 28(8): 1381-1388] [23] 赵江宁, 冯嘉仪, 刘露, 等. 长岗山不同林分类型对土壤理化性质的影响. 林业与环境科学, 2017, 33(3): 48-52 [Zhao J-N, Feng J-Y, Liu L, et al. Soil physical and chemical properties under different forest types in Changgang Mountain. Forestry and Environmental Science, 2017, 33(3): 48-52] [24] 陆宇明, 吴东梅, 许恩兰, 等. 不同林龄杉木林下套种阔叶树对土壤磷组分的影响. 水土保持学报, 2020, 34(1): 275-282 [Lu Y-M, Wu D-M, Xu E-L, et al. Effects of Chinese fir interplanting with broad-leaved trees on soil phosphorus fractions. Journal of Soil and Water Conservation, 2020, 34(1): 275-282] [25] 刘文忠. 杉木火力楠混交林生物量C库及其分配. 北华大学学报: 自然科学版, 2008, 9(6): 540-544 [Liu W-Z. Biomass carbon storage and allocation in Cunninghamia lanceolata and Michelia macclurei mixed forest. Journal of Beihua University: Natural Science, 2008, 9(6): 540-544] [26] 林武星, 黄雍容, 王光玉, 等. 九龙江流域杉木混交林土壤结构的分形研究. 生物数学学报, 2014, 29(2): 283-290 [Lin W-X, Huang Y-R, Wang G-Y, et al. Fractal study on soil structure of mixed forest of Cunninghamia lanceolata in Jiulong River watershed. Journal of Biomathematics, 2014, 29(2): 283-290] [27] Wang S, Li T, Zheng Z. Tea plantation age effects on soil aggregate-associated carbon and nitrogen in the hilly region of western Sichuan, China. Soil and Tillage Research, 2018, 180: 91-98 [28] Adesodun JK, Adeyemi EF, Oyegoke CO. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses. Soil and Tillage Research, 2007, 92: 190-197 [29] Jiang X, Hu Y, Bedell JH, et al. Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage. Soil Use and Management, 2011, 27: 28-35 [30] 郭家新. 杉木火力楠混交林与杉木纯林土壤碳氮库研究. 福建林业科技, 2008, 35(2): 5-9 [Guo J-X. Study on soil carbon and nitrogen pool in mixed forest of Cunninghamia lanceolata-Machilus fortunei and pure forest of Cunninghamia lanceolata. Fujian Forestry Science and Technology, 2008, 35(2): 5-9] [31] Wu W, Zheng Z, Li T, et al. Distribution of inorganic phosphorus fractions in water-stable aggregates of soil from tea plantations converted from farmland in the hilly region of western Sichuan, China. Journal of Soils and Sediments, 2018, 18: 906-916 [32] 王晟强, 杜磊, 叶绍明. 桂南茶园土壤团聚体有机碳和养分对植茶年限的响应. 应用生态学报, 2020, 31(3): 837-844 [Wang S-Q, Du L, Ye S-M. Responses of soil aggregate-associated organic carbon and nutrients to tea cultivation age in southern Guangxi, China. Chinese Journal of Applied Ecology, 2020, 31(3): 837-844] |