[1] 刘中良, 宇万太. 土壤团聚体有机碳研究进展. 中国生态农业学报, 2011, 19(2): 447-455 [2] 窦森, 李凯, 关松. 土壤团聚体中有机碳研究进展. 土壤学报, 2011, 48(2): 412-418 [3] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between micro-aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79: 7-31 [4] Wang W, Chen WC, Wang KR, et al. Effects of long-term fertilization on the distribution of carbon, nitrogen and phosphorus in water-stable aggregates in paddy soil. Agricultural Sciences in China, 2011, 10: 1932-1940 [5] 徐江兵, 李成亮, 何园球, 等. 不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响. 土壤学报, 2007, 44(4): 675-682 [6] 李景, 吴会军, 武雪萍, 等. 15年保护性耕作对黄土坡耕地区土壤及团聚体固碳效应的影响. 中国农业科学, 2015, 48(23): 4690-4697 [7] Xu XR, Schaeffer S, Sun ZH, et al. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil and Tillage Research, 2020, 199: 104593 [8] Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 2007, 450: 277-280 [9] Rumpel C, Kögel-Knabner I. Deep soil organic matter: A key but poorly understood component of terrestrial C cycle. Plant and Soil, 2011, 338: 143-158 [10] Jobbagy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10: 423-436 [11] Sanaullah M, Chabbi A, Leifeld J, et al. Decomposition and stabilization of root litter in top- and subsoil horizons: What is the difference? Plant and Soil, 2011, 338: 127-141 [12] 刘顺国, 付时丰, 汪景宽, 等. 长期地膜覆盖对棕壤水分含量和储量动态变化的影响. 沈阳农业大学学报, 2006, 37(5): 725-728 [13] 汪景宽, 王铁宇, 张旭东, 等. 黑土土壤质量演变初探. I. 不同开垦年限黑土主要质量指标演变规律. 沈阳农业大学学报, 2002, 33(1): 43-47 [14] 赵搏, 丁雪丽, 汪景宽, 等. 地膜覆盖和施肥对棕壤剖面溶解性有机碳分布的影响. 土壤通报, 2019, 50(4): 847-853 [15] 王丰, 任灵玲, 安婷婷, 等. 长期施肥对土壤中氨氧化细菌丰度和种群多样性的影响. 华中农业大学学报, 2020, 39(1): 86-94 [16] 张秀芝, 李强, 高洪军, 等. 长期施肥对黑土水稳性团聚体稳定性及有机碳分布的影响. 中国农业科学, 2020, 53(6): 1214-1223 [17] 何瑞清, 王百群, 张燕, 等. 长期施用化肥条件下塿土团聚体中有机碳与养分分布. 水土保持通报, 2016, 36(6): 347-351 [18] 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960 [19] 徐明岗, 张旭博, 孙楠, 等. 农田土壤固碳与增产协同效应研究进展. 植物营养与肥料学报, 2017, 23(6): 1441-1449 [20] 李锐. 中国水土流失基础研究的机遇与挑战. 自然杂志, 2008, 30(1): 6-11 [21] 郝小雨, 马星竹, 周宝库, 等. 长期不同施肥措施下黑土有机碳的固存效应. 水土保持学报, 2016, 30(5): 316-321 [22] 高洪军, 彭畅, 张秀芝, 等. 秸秆还田量对黑土区土壤及团聚体有机碳变化特征和固碳效率的影响. 中国农业科学, 2020, 53(22): 4613-4622 [23] 李小红, 王淑颖, 程娜, 等. 施肥和土层置换对深层土壤秸秆碳固定与残留的影响. 土壤通报, 2020, 51(5): 1196-1200 [24] 王淑颖, 李小红, 程娜, 等. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2): 345-356 [25] Chivenge P, Vanlauwe B, Gentile R, et al. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology and Biochemistry, 2011, 43: 657-666 [26] Blaud A, Lerch TZ, Chevallier T, et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012, 53: 1-9 [27] Conrad R, Klose M, Yuan Q, et al. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry, 2012, 49: 193-199 [28] Troyer ID, Amery F, Moorleghem CV, et al. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biology and Biochemistry, 2011, 43: 513-519 [29] 孙元宏, 高雪莹, 赵兴敏, 等. 添加玉米秸秆对白浆土重组有机碳及团聚体组成的影响. 土壤学报, 2017, 54(4): 1009-1017 [30] Schmidt MW, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56 [31] 王兴, 祁剑英, 井震寰, 等. 长期保护性耕作对稻田土壤团聚体稳定性和碳氮含量的影响. 农业工程学报, 2019, 35(24): 121-128 [32] 王碧胜, 于维水, 武雪萍, 等. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响. 中国农业科学, 2021, 54(6): 1176-1187 [33] 王旭东, 陈鲜妮, 王彩霞, 等. 农田不同肥力条件下玉米秸秆腐解效果. 农业工程学报, 2009, 25(10): 252-257 [34] 曹莹菲, 张红, 赵聪, 等. 秸秆腐解过程中结构的变化特征. 农业环境科学学报, 2016, 35(5): 976-984 [35] 宋佳, 黄晶, 高菊生, 等. 冬种绿肥和秸秆还田对双季稻区土壤团聚体和有机质官能团的影响. 应用生态学报, 2021, 32(2): 564-570 [36] An TT, Schaeffer S, Zhuang J, et al. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China. Biology and Fertility of Soils, 2015, 51: 605-613 [37] Dick DP, Goncalves CN, Dalmolin RSD, et al. Characteristics of soil organic matter of different Brazilian ferralsols under native vegetation as a function of soil depth. Geoderma, 2005, 124: 319-333 [38] Li N, Long JH, Han XZ, et al. Molecular characterization of soil organic carbon in water-stable aggregate fractions during the early pedogenesis from parent material of Mollisols. Journal of Soils and Sediments, 2020, 20: 1869-1880 |