[1] Lv Y, Zhou YW, Wang HF, et al. Study on the multivariate prediction model and exposure level of indoor and outdoor particulate concentration in severe cold region of China. Ecotoxicology and Environmental Safety, 2018, 170: 708-715 [2] 中华人民共和国生态环境部. 2022中国生态环境状况公报. 北京: 中华人民共和国生态环境部, 2022 [3] Liang ZJ, Yang Y, Yi J, et al. Maternal PM2.5 exposure associated with stillbirth: A large birth cohort study in seven Chinese cities. International Journal of Hygiene and Environmental Health, 2021, 236: 113795 [4] Loomis D, Huang W, Chen GS. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chinese Journal of Cancer, 2014, 33: 189-196 [5] 刘金强, 曹治国, 郭泽敏, 等. 植物叶片表面水溶与非水溶性颗粒物滞纳量分离定量评估: 以5种树种为例. 应用生态学报, 2019, 30(5): 1763-1771 [6] Yli-Pelkonen V, Setálá H, Viippola V. Urban forests near roads do not reduce gaseous air pollutant concentrations but have an impact on particles levels. Landscape and Urban Planning, 2017, 158: 39-47 [7] Selmi W, Weber C, Riviere E, et al. Air pollution removal by trees in public green spaces in Strasbourg City, France. Urban Forestry & Urban Greening, 2016, 17: 192-201 [8] Fusaro L, Salvatori E, Winkler A, et al. Urban trees for biomonitoring atmospheric particulate matter: An integrated approach combining plant functional traits, magnetic and chemical properties. Ecological Indicators, 2021, 126: 107707 [9] Hinds WC. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: Wiley, 1999 [10] 唐敬超, 黄昱, 孙宝娣, 等. 大气颗粒物对植物影响研究进展. 生态学杂志, 2023, 43(1): 1-11 [11] 乔冠皓, 陈警伟, 刘肖瑜, 等. 两种常见绿化树种对大气颗粒物的滞留与再悬浮. 应用生态学报, 2017, 28(1): 266-272 [12] He Y, Jiang YX, Yang Y, et al. Composition of fine particulate matter and risk of preterm birth: A nationwide birth cohort study in 336 Chinese cities. Journal of Hazardous Materials, 2022, 425: 127645 [13] Morakinyo TE, Lam YF. Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment, 2016, 103: 262-275 [14] 徐晓梧, 宝乐, 莫莉, 等. 树皮对空气颗粒物的吸附能力. 生态学杂志, 2016, 35(12): 3242-3249 [15] Han SE, Kim S. Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Scientific Reports, 2021, 11: 11556 [16] 屈新运, 张天翼, 高天娥, 等. 10种常绿植物滞留大气颗粒物能力与叶表面微结构的关系. 陕西师范大学学报: 自然科学版, 2019, 47(3): 84-90 [17] 刘维欢, 李维维, 裴顺祥, 等. 我国常见园林植物叶片滞尘能力分析. 林业与生态科学, 2021, 36(3): 328-336 [18] 徐海军. 哈尔滨城市森林滞尘功能及潜力提升模拟研究. 博士论文. 哈尔滨: 东北林业大学, 2022 [19] Fei Y, Feng J, Zhu JY, et al. In-situ online detection of atmospheric volatile organic compounds based on laser induced breakdown spectroscopy: A review. Atomic Spectroscopy, 2023, 44: 178-190 [20] 王炜罡, 王义丹, 葛茂发, 等. 一种大气气态污染物与颗粒物原位反应装置及检测方法. 中国, CN110146523A. 2019-08-20 [21] Saebo A, Popek R, Nawrot B. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 2012, 427: 347-354 [22] 赵勇, 李树人, 阎志平. 城市绿地的滞尘效应及评价方法. 华中农业大学学报, 2002, 21(6): 582-586 [23] Kończak B, Cempa M, Pierzchala Ŀ, et al. Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. Environmental Pollution, 2021, 268: 115465 [24] 高丹丹, 赵丽娅, 李成, 等. 常见园林植物滞尘能力及评价方法. 湖北大学学报: 自然科学版, 2017, 39(1): 56-59 [25] 李少宁, 鲁绍伟, 刘斌, 等. 北京主要绿化树种叶表面微形态与 PM2.5吸滞能力. 中南林业科技大学学报, 2017, 37(8): 98-107 [26] 史军娜, 张罡, 安海龙, 等. 北京市 16种树木吸附大气颗粒物的差异及颗粒物研究. 北京林业大学学报, 2016, 38(12): 84-91 [27] 郭雅婷, 李运远, 林辰松. 不同气象条件下北京市绿地植物群落对大气颗粒物消减作用. 中国城市林业, 2022, 20(1): 15-20 [28] 殷杉, 蔡静萍, 陈丽萍, 等. 交通绿化带植物配置对空气颗粒物的净化效益. 生态学报, 2007, 27(11): 4590-4595 [29] Amtul M, Irfan A, Muhammad ZA, et al. The comparative assessment of heavy metal accumulation and bio-indication in coastal dune halophytes. Ecotoxicology and Environmental Safety, 2020, 195: 110486 [30] 王黎华. 杭州市八种园林植物滞留大气颗粒物能力差异研究. 硕士论文. 杭州: 浙江农林大学, 2019 [31] 吕东蓬. 三种垂直绿化植物滞尘效应与其对光合作用影响的研究. 硕士论文. 南京: 南京林业大学, 2011 [32] 王会霞, 石辉, 李秧秧. 城市绿化植物叶片表面特征对滞尘能力的影响. 应用生态学报, 2010, 21(12): 3077-3082 [33] 刘斌, 鲁绍伟, 李少宁, 等. 北京大兴 6 种常见绿化树种吸附 PM2.5能力研究. 环境科学与技术, 2016, 39(2): 31-37 [34] Zhang WK, Zhang Z, Meng H, et al. How does leaf surface micromorphology of different trees impact their ability to capture particulate matter? Forests, 2018, 9: 681 [35] 谢滨泽, 王会霞, 杨佳, 等. 北京常见阔叶绿化植物滞留 PM2.5 能力与叶面微结构的关系. 西北植物学报, 2014, 34(12): 2432-2438 [36] Zhang WK, Wang B, Niu X. Relationship between leaf surface characteristics and particle capturing capacities of different tree species in Beijing. Forests, 2017, 8: 92 [37] Wang CH, Wu SH, Zhou SL, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Science of the Total Environment, 2015, 527: 375-383 [38] 谢延翠, 赵明, 何静, 等. 不同径阶青杄林和油松林滞尘能力研究. 西北林学院学报, 2020, 35(6): 17-24 [39] 刘玲, 方炎明, 王顺昌, 等. 7种树木的叶片微形态与空气悬浮颗粒吸附及重金属累积特征. 环境科学, 2013, 34(6): 2361-2367 [40] Esposito F, Memoli V, Panico SC, et al. Leaf traits of Quercus ilex L. affect particulate matter accumulation. Urban Forestry & Urban Greening, 2020, 54: 126780 [41] 俞学如. 南京市主要绿化树种叶面滞尘特征及其叶面结构的关系. 硕士论文. 南京: 南京林业大学, 2008 [42] 邵锋. 园林树木对PM2.5等大气颗粒物浓度和成分的影响及滞尘效应研究: 以浙江农林大学为例. 博士论文. 北京: 北京林业大学, 2020 [43] Xie CK, Kan LY, Guo JK, et al. A dynamic processes study of PM retention by trees under different wind conditions. Environmental Pollution, 2018, 233: 315-322 [44] Weerakkody U, Dover JW, Mitchell P, et al. The impact of rainfall in remobilising particulate matter accumulated on leaves of four evergreen species grown on a green screen and a living wall. Urban Forestry & Urban Greening, 2018, 35: 21-31 [45] Freer-Smith PH, El-Khatib AA, Taylor G. Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (Ficus nitida and Eucalyptus globulus) with European and North American species. Water, Air and Soil Pollution, 2004, 155: 173-187 [46] Wang HX, Shi H, Wang YH. Effects of weather, time, and pollution level on the amount of particulate matter deposited on leaves of Ligustrum lucidum. The Scientific World Journal, 2015, 2015: 935942 [47] Sgrigna G, Saebo A, Gawronski S, et al. Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environmental Pollution, 2015, 197: 187-194 [48] Pullman M. Conifer PM2.5 Deposition and Resuspension in Wind and Rain Events. Master Thesis. New York: Cornell University, 2008 [49] Xu XW, Zhang ZM, Bao L, et al. Influence of rainfall duration and intensity on particulate matter removal from plant leaves. Science of the Total Environment, 2017, 609: 11-16 [50] Camejo D, Rodriguez P, Angeles M, et al. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 2005, 162: 281-289 [51] Moretti CL, Mattos LM, Calbo AG, et al. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 2010, 439: 1824-1832 [52] Schreibe RL. Effect of temperature on circular transpiration of isolated circular membranes and leaf discs. Journal of Experimental Botany, 2001, 52: 1893-1900 [53] 刘维欢. 北京郊区山地侧柏人工林对大气颗粒物滞纳作用的影响因素研究. 硕士论文. 保定: 河北农业大学, 2021 [54] Zhao XG, He M, Shang HB, et al. Biomonitoring polycyclic aromatic hydrocarbons by Salix matsudana leaves: A comparison with the relevant air content and evaluation of environmental parameter effects. Atmospheric Environment, 2018, 181: 47-53 [55] Zhang G, Xu HH, Qi B, et al. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China. Atmospheric Chemistry and Physics, 2018, 18: 1705-1728 [56] Blanusa T, Fantozzi F, Monaci F, et al. Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments. Urban Forestry & Urban Greening, 2015, 14: 1095-1101 [57] Xuan YX, Tang CY, Cao YJ, et al. Isotopic evidence for seasonal and long-term C and N cycling in a subtro-pical basin of southern China. Journal of Hydrology, 2019, 577: 123926 [58] 张凌, 郭悦, 唐蒲霞, 等. 冬季不同植物群落对大气颗粒物浓度的阻滞作用. 南京信息工程大学学报: 自然科学版, 2023, 15(1): 16-23 [59] 吕铃钥, 李洪远, 杨佳楠. 植物吸附大气颗粒物的时空变化规律及其影响因素的研究进展. 生态学杂志, 2016, 35(2): 524-533 [60] 陈玮, 何兴元, 张粤, 等. 东北地区城市针叶树冬季滞尘效应研究. 应用生态学报, 2003, 14(12): 2113-2116 [61] 邱媛, 管东生, 宋巍巍. 惠州城市植被的滞尘效应. 生态学报, 2008, 28(6): 2455-2462 [62] 余中平. 杭州经济技术开发区大气降尘特征分析与污染防治对策研究. 硕士论文. 杭州: 浙江工业大学, 2011 [63] Jia MY, Zhou DQ, Lu SP, et al. Assessment of foliar dust particle retention and toxic metal accumulation abi-lity of fifteen roadside tree species: Relationship and mechanism. Atmospheric Pollution Research, 2021, 12: 36-45 [64] 贾佳, 韩力慧, 程水源, 等. 京津冀区域 PM2.5 及二次无机组分污染特征研究. 中国环境科学, 2018, 38(3): 801-811 [65] 林昕, 曹芳, 翟晓瑶, 等. 中国典型城市冬季大气细颗粒物水溶性离子特征及来源分析. 生态环境学报, 2019, 28(2): 307-315 [66] 张春梅. 太原市沙尘和非沙尘天气大气细颗粒物质谱特征及来源. 山西大学学报: 自然科学版, 2019, 42(2): 443-453 [67] 李妙玲. 北京大气细颗粒物的化学组成特征及来源解析. 硕士论文. 北京: 北京化工大学, 2018 [68] 周涛, 汝小龙. 北京市雾霾天气成因及治理措施研究. 华北电力大学学报: 社会科学版, 2012(2): 12-16 [69] 张志强, 张璐. 城市建筑环境中绿色基础设施对大气颗粒物的影响. 中国城市林业, 2021, 19(1): 1-18 [70] Gromke C, Jamarkattel N, Ruck B. Influence of roadside hedgerows on air quality in urban street canyons. Atmospheric Environment, 2016, 139: 75-86 [71] Wang XH, Bi XH, Sheng GY, et al. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 2006, 119: 425-439 [72] Kong SF, Han B, Bai ZP, et al. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a costal site of Tianjin, China. Science of the Total Environment, 2010, 408: 4681-4694 [73] Chaudhary IJ, Rathore D. Suspended particulate matter deposition and its impact on urban trees. Atmospheric Pollution Research, 2018, 9: 1072-1082 [74] Popek R, Ŀukowski A, Grabowski M. Influence of particulate matter accumulation on photosynthetic apparatus of Physocarpus opulifolius and Sorbaria sorbifolia. Polish Journal of Environmental Studies, 2018, 27: 2391-2396 [75] Pariyar S, Noga G. Rainfall does not impair particulate matter accumulation on peri-urban field crops, but improves photosynthetic activity at UV exposure. Environmental and Experimental Botany, 2018, 156: 288-297 [76] 杜梅, 张克云, 陈树元, 等. 水泥粉尘沉降对杉木等树种生长的影响. 植物资源与环境, 1998, 7(1): 54-58 [77] Lerman S. Cement-kiln Dust and the Bean Plant (Phaseolus vulgaris L. Black Valentine var.); in Depth Investigations into Plant Morphology, Physiology and Pathology. Berkeley, CA, USA: University of California (UC), 1972 [78] 都洁, 宋会兴. 模拟粉尘覆盖对瓜叶菊叶片光合特性的影响. 四川农业大学学报, 2019, 37(1): 41-46 [79] 王会霞, 石辉, 刘剑华, 等. 西安城区2种女贞叶面滞尘和叶片形态结构. 安全与环境学报, 2018, 18(6): 2344-2351 [80] 许海涛, 陈桂娟. 群体效应对夏玉米光合生理特性及籽粒产量的影响. 河南科技学院学报: 自然科学版, 2014, 42(3): 8-15 [81] 杨周敏. 西安市区不同绿化植物的滞尘效应季节变化研究. 水土保持研究, 2015, 22(4): 178-183, 188 [82] Poudyal K, Jha PK, Zobel DB. Role of wood water properties and leaf dynamics in phenology and response to drought in evergreen Himalayan tree species. Ecoprint: An International Journal of Ecology, 2014, 19: 71-84 [83] Pauar K, 孔再德. 水泥尘、煤尘和飞灰对黄秋葵影响的比较. 农业环境与发展, 1986(3): 43-44 [84] Treesubsuntorn C, Setiawan GD, Permana BH, et al. Particulate matter and volatile organic compound phytoremediation by perennial plants: Affecting factors and plant stress response. Science of the Total Environment, 2021, 794: 148779 [85] Rahul N, Harsh BP, Makhan SK, et al. Air pollution tolerance index for selected species of plants in roadside highways at Allahabad, Uttar Pradesh, India. International Journal of Environment and Climate Change, 2020, 10: 247-254 [86] 李辰. 社区散生林木叶片滞留大气颗粒物能力研究. 硕士论文. 北京: 北京林业大学, 2014 [87] Xie XD, Wang TJ, Yue X, et al. Effects of atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in China. Atmospheric Research, 2020, 237: 104859 [88] Strada S, Unger N, Yue X. Observed aerosol-induced radiative effect on plant productivity in the eastern Uni-ted States. Atmospheric Environment, 2015, 122: 463-476 [89] Zhou L, Chen XH, Tian X. The impact of fine matter (PM2.5) on China's agricultural production from 2001 to 2010. Journal of Cleaner Production, 2018, 178: 133-141 [90] 佃袁勇, 方圣辉, 徐永荣, 等. 光谱波段宽度对森林叶片叶绿素含量反演的影响分析. 测绘科学, 2012, 37(6): 40-42 [91] 邵增明. 不同光照条件下红叶石楠叶片叶绿素含量的差异性研究. 安徽林业科技, 2015, 41(1): 44-47 [92] Przybysz A, Popek R, Gawronska H, et al. Efficiency of photosynthetic apparatus of plants grown in sites differing in level of particulate matter. Acta Scientiarum Polonorum Hortorum Cultus, 2014, 13: 17-30 [93] Tauqeer HM, Ali S, Rizwan M, et al. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotoxicology and Environmental Safety, 2016, 126: 138-146 [94] Zha Y, Tang J, Pan Y. The effects of simulated acid rain and cadmium-containing atmospheric fine particulate matter on the pakchoi (Brassica campestris. L) seedlings growth and physiology. Soil Science and Plant Nutrition, 2022, 68: 317-328 [95] 淑敏, 敖敦格日乐, 胡和珠拉, 等. 辽西北部主要绿化树种对粉尘污染的生理响应研究. 西北植物学报, 2020, 40(10): 1740-1750 [96] Qadir SU, Raja V, Siddiqui WA. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India. Ecotoxicology and Environmental Safety, 2016, 129: 320-328 [97] 郭俊刚. 粉尘污染对不同园林植物生理特性的影响. 江苏农业科学, 2016, 44(1): 231-235 [98] 王蕾, 高尚玉, 刘连友, 等. 北京市 11 种园林植物滞留大气颗粒物能力研究. 应用生态学报, 2006, 17(4): 597-601 [99] Koppen G, Verschaeve L. The alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cell. Mutation Research, 1996, 360: 193-200 [100] 林爱军, 张旭红, 张增利, 等. 利用不同植物进行 DNA 损伤彗星试验的方法比较. 生态毒理学报, 2006, 1(2): 165-171 [101] 王静, 蒋磊, 王艳, 等. 紫外辐射诱导植物叶片 DNA 损伤敏感性差异. 植物学报, 2007, 24(2): 189-193 [102] 张瑞文. 贝可利空气凤梨对大气颗粒物和隐性雾霾“氡”的吸收及胁迫响应研究. 硕士论文. 青岛: 青岛农业大学, 2019 [103] 郑桂灵, 李鹏. 一种利用松萝检测放射性气体氡对植物DNA损伤的评价方法. 中国, CN201711276202.9. 2020-05-26 [104] 王霞, 尹晓雨, 于晓明, 等. 玉米跨代干旱胁迫记忆生理机制及 DNA 甲基化变化分析. 西北植物学报, 2021, 41(10): 1691-1699 [105] Boyko A, Blevins T, Yao Y, et al. Transgenerational adaptation of arabidopsis to stress requires DNA methy-lation and the function of Dicer-Like proteins. PLoS One, 2010, 5(3): e9514 |