欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2024, Vol. 35 ›› Issue (9): 2382-2391.doi: 10.13287/j.1001-9332.202409.012

• 专家见解 • 上一篇    下一篇

土壤氢肥效应的微生物学机制

冯清山1,2,3, 毛勤江1,2,3, 马建国1,2,3, 李玉满1,2,3, 杨小倩1,2,3, 鲁星鑫1,2,3, 王晓波1,2,3*   

  1. 1草种创新与草地农业生态系统全国重点实验室, 兰州 730000;
    2兰州大学草地农业科技学院, 兰州 730020;
    3兰州大学草地微生物研究中心, 兰州 730000
  • 收稿日期:2024-01-09 接受日期:2024-07-17 出版日期:2024-09-18 发布日期:2025-03-18
  • 通讯作者: * E-mail: wangxiaobo@lzu.edu.cn
  • 作者简介:冯清山, 女, 1999年生, 硕士研究生。主要从事土壤氢气富集对植物的促生机制研究。E-mail: 220220902430@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32271716)和甘肃省自然科学基金重点项目(23JRRA1023)

Microbiological mechanism of hydrogen fertilizer effect in soil

FENG Qingshan1,2,3, MAO Qinjiang1,2,3, MA Jianguo1,2,3, LI Yuman1,2,3, YANG Xiaoqian1,2,3, LU Xingxin1,2,3, WANG Xiaobo1,2,3*   

  1. 1State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, China;
    2College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
    3Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
  • Received:2024-01-09 Accepted:2024-07-17 Online:2024-09-18 Published:2025-03-18

摘要: 长期以来,豆科与非豆科作物间作、轮作因可以在减少氮肥施用的同时增加作物产量,是农田生态系统普遍采用的一项重要管理措施。当前,对这一管理方式减肥增效的解释主要集中在豆科对非豆科植物氮(N)磷(P)等养分供应的提高、土壤空间异质性增大导致的养分空间利用效率的提高以及土壤结构和抗病性的改善等方面。然而,这些现有理论还无法完全解释豆科与非豆科作物间作、轮作的增产效益。豆科植物根瘤固氮过程会释放大量副产物氢气(H2),这些H2可在豆科植物根瘤附近土壤中大量富集,但人们却很少在其土壤表面监测到H2的流失。研究发现,根瘤固氮释放的H2可被氢氧化细菌(HOB)迅速吸收利用(以H2作为电子供体通过氧化还原反应同化固定CO2合成细胞物质)并对植物生长产生促进作用。然而,人们至今对这种“氢肥效应”产生的生物学机理和生态学过程仍不清楚。本文综述了国内外关于H2诱导的植物促生效应及其产生的微生物学机理,旨在开辟农田生态系统生产力提升新途径,为H2在农业生产中的应用提供科学依据。

关键词: 氢气, 土壤微生物, 氢氧化细菌, 根际促生菌, 土壤过程

Abstract: For a long time, intercropping and rotation of leguminous with non-leguminous crops is widely used to reduce the application of nitrogen fertilizer and increase yield in agroecosystems. At present, most researchers considered that this management measure is helpful for reducing fertilizer consumption and increasing its efficiency, as it can improve nutrient supply of legumestonon-legumes, the spatial nutrient utilization efficiency by enhancing soil spatial heterogeneity, and improve soil structure and disease resistance. However, current theories cannot fully explain the positive effect of crop rotation and inter-cropping systems involving legumes. A large amount of hydrogen (H2) can be produced as an obligatory by-product of nitrogenase responsible for nitrogen (N2) fixation in the root nodules of leguminous plants. Despite of substantial amounts of H2 enriched in the rhizosphere of legumes, only a minor proportion of H2 is found to leak to soil surface. Increasing evidence showed that most H2 released in soil is immediately depleted in the surrounding of N2-fixing nodules by H2-oxidizing bacteria (HOB) thriving in soil. HOB can use H2 as an electron donor to assimilate and fix CO2 through redox reactions to synthesize cellular substances and consequently promote plant growth. To date, however, little is known about the biological mechanism and ecological process behind the “hydrogen fertilizer effect”. Therefore, we review the H2-induced plant growth-promoting effects and its microbiological mechanisms. Our aims were to explore a new way for enhancing agroecosystem production, and to provide scientific basis for future utilization of H2 in agricultural production practices.

Key words: hydrogen, soil microorganism, H2-oxidizing bacteria, plant growth-promoting rhizobacteria, soil processes