[1] Belnap J, Weber B, Büdel B. Biological soil crusts as an organizing principle in drylands// Weber B, Büdel B, Belnap J, eds. Biological Soil Crusts: An Organizing Principle in Drylands. Berlin, Germany: Springer, 2016: 3-13 [2] Belnap J, Büdel B, Lange OL. Biological soil crusts: Characteristics and distribution// Belnap J, Lange OL, eds. Biological Soil Crusts: Structure, Function, and Management. Berlin, Germany: Springer, 2003: 3-30 [3] Ji JY, Zhao YG, Zhang WT, et al. Quantitative assessment of biocrust distribution patterns using landscape indices benefits the study of their soil conservation functions. Geoderma, 2023, 429: 116257 [4] Karnieli J. Development and implementation of spectral crust index over dune sands. Remote Sensing, 1997, 18: 1207-1220 [5] Chen J, Zhang YM, Wang L, et al. A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sensing of Environment, 2005, 96: 165-175 [6] Weber B, Olehowski C, Knerr T, et al. A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery. Remote Sensing of Environment, 2008, 112: 2187-2201 [7] Wang ZD, Wu BF, Zhang M, et al. Indices enhance biological soil crust mapping in sandy and desert lands. Remote Sensing of Environment, 2022, 278: 113078 [8] 姜泽, 陈杰, 唐丽玉, 等. 基于机载LiDAR数据的福建柏人工林林木参数提取. 应用生态学报, 2024, 35(2): 321-329 [9] 郭洋楠, 唐佳佳, 杨永均, 等. 利用LiDAR揭示采煤沉陷区人工修复植物群落冠层结构分异. 矿业安全与环保, 2023, 50(6): 37-41 [10] Ding JY, Eldridge DJ. Biotic and abiotic effects on biocrust cover vary with microsite along an extensive aridity gradient. Plant and Soil, 2020, 450: 429-441 [11] 李新荣, 谭会娟, 回嵘, 等. 中国荒漠与沙地生物土壤结皮研究. 科学通报, 2018, 63(23): 2320-2334 [12] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局. 生态学报, 2016, 36(2): 377-386 [13] Chen N, Yu KL, Jia RL, et al. Biocrust as one of multiple stable states in global drylands. Science Advances, 2020, 6: eaay3763 [14] Harel Y, Ohad I, Kaplan A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiology, 2004, 136: 3070-3079 [15] Singh J, Gautam S, Pant AB. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher Oasis region, East Antarctica. Cellular and Molecular Biology, 2012, 58: 80-84 [16] Lü YH, Fu BJ, Feng XM, et al. A policy-driven large scale ecological restoration: Quantifying ecosystem ser-vices changes in the Loess Plateau of China. PLoS One, 2012, 7: e31782 [17] Wang H, Liu GH, Li ZS, et al. Assessing the driving forces in vegetation dynamics using net primary productivity as the indicator: A case study in Jinghe River Basin in the Loess Plateau. Forests, 2018, 9: 374 [18] Zhao YG, Xu MX. Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: Influence of biocrust patches and plant canopies. Journal of Hydrologic Engineering, 2013, 18: 387-393 [19] 吉静怡, 赵允格, 杨凯, 等. 黄土丘陵区生物结皮坡面产流产沙与其分布格局的关联. 生态学报, 2021, 41(4): 1381-1390 [20] 郭雅丽, 赵允格, 高丽倩, 等. 黄土丘陵区草本植物覆盖下生物结皮对坡面径流流速的削减作用. 应用生态学报, 2022, 33(7): 1871-1877 [21] 傅子洹, 王云强, 安芷生. 黄土区小流域土壤容重和饱和导水率的时空动态特征. 农业工程学报, 2015, 31(13): 128-134 [22] 查轩, 唐克丽. 水蚀风蚀交错带小流域生态环境综合治理模式研究. 自然资源学报, 2000, 15(1): 97-100 [23] Eldridge DJ, Zaady E, Shachak M. Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena, 2000, 40: 323-336 [24] Martinez I, Escudero A, Maestre FT, et al. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Australian Journal of Botany, 2006, 54: 339-348 [25] Cole C, Stark L, Bonine M, et al. Transplant survivorship of bryophyte soil crusts in the Mojave Desert. Restoration Ecology, 2010, 18: 198-205 [26] Hamerlynck EP, Csintalan Z, Nagy Z, et al. Ecophysiological consequences of contrasting microenvironments on the desiccation tolerant moss Tortula ruralis. Oecologia, 2002, 131: 498-505 [27] Xu SJ, Liu CJ, Jiang PA, et al. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis. Science of the Total Environment, 2009, 407: 2411-2419 [28] Zhang YM, Aradottir AL, Serpe M, et al. Interactions of biological soil crusts with vascular plants// Weber B, Büdel B, Belnap J, eds. Biological Soil Crusts: An Organizing Principle in Drylands. Ecological studies. Berlin, Germany: Springer, 2016: 385-406 [29] Bowker MA, Belnap J, Büdel B, et al. Controls on distribution patterns of biological soil crusts at micro- to global scales// Weber B, Büdel B, Belnap J, eds. Biological Soil Crusts: An Organizing Principle in Drylands. Ecological studies. Berlin, Germany: Springer, 2016: 173-197 [30] Serpe MD, Roberts E, Eldridge DJ, et al. Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland. Soil Biology and Biochemistry, 2013, 60: 220-230 [31] Li J, Zhao CY, Song YJ, et al. Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments, 2007, 71: 350-361 [32] Boeken B, Orenstein D. The effect of plant litter on ecosystem properties in a Mediterranean semi-arid shrubland. Journal of Vegetation Science, 2001, 12: 825-832 [33] Berkeley A, Thomas AD, Dougill AJ. Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands. African Journal of Ecology, 2005, 43: 137-145 [34] Zhang YM, Chen J, Wang L, et al. The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. Journal of Arid Environments, 2007, 68: 599-610 |