[1] 汪振华, 王凯, 赵静, 等. 贻贝养殖区底层鱼类群落结构特征分析. 海洋科学, 2015, 39(6): 21-31 [2] 郑新庆, 黄凌风, 李元超, 等. 啃食性端足类强壮藻钩虾对筼筜湖三种大型海藻的摄食选择性. 生态学报, 2013, 33(22): 7166-7172 [3] 陈明超. 枸杞岛海域浮游植物群落结构分析. 硕士论文. 上海: 上海海洋大学, 2011 [4] 朱帅麟, 单晓鸾, 刘明智, 等. 贻贝筏式养殖区两类端足目生物分布特征及其与环境因子关系. 水生生物学报, 2024, 48(7): 1159-1169 [5] 郑新庆, 黄凌风, 贾晓燕, 等. 筼筜湖大型海藻群落的几种钩虾亚目端足类的种群产量研究. 海洋学报, 2011, 33(6): 134-141 [6] 薛彬, 李磊, 蒋丽勤, 等. 基于稳定同位素的枸杞岛海藻场鱼类群落营养结构特征. 海洋与湖沼, 2024, 55(2): 431-440 [7] 章守宇, 崔潇, 汪振华, 等. 枸杞岛贻贝养殖筏架附着海藻的群落结构. 水产学报, 2021, 45(5): 726-739 [8] Navarro-Mayoral S, Tuya F, Prado P, et al. Drivers of variation in seagrass-associated amphipods across biogeographical areas. Marine Environmental Research, 2023, 186: 105918 [9] 王凯, 章守宇, 汪振华, 等. 枸杞岛海藻场褐菖鲉的摄食习性. 水产学报, 2010, 34(2): 227-235 [10] Bessa F, Goncalves SC, Franco JN, et al. Temporal changes in macrofauna as response indicator to potential human pressures on sandy beaches. Ecological Indicators, 2014, 41: 49-57 [11] Carvalho NF, Grande H, Rosa Filho JS, et al. The structure of gammarid amphipod (Crustacea, Peracarida) assemblages associated with Sargassum (Phaeophyta, Fucales) and their link with the structural complexity of algae. Hydrobiologia, 2018, 820: 245-254 [12] Montgomery WI, Elwood RW, Dick JTA. Invader abundance and contraction of niche breadth during replacement of a native gammarid amphipod. Ecology and Evolution, 2022, 12: e8500 [13] Li C, Tang Y, Sun W, et al. Physiological responses of Ampithoe valida and its feeding potential on Ulva prolifera. Marine Environmental Research, 2023, 186: 105942 [14] 刘书荣, 周曦杰, 崔潇, 等. 贻贝筏式养殖区海藻群落对两类代表性藻栖端足目种群特征的影响. 水产学报, 2020, 44(3): 461-468 [15] 刘书荣, 周曦杰, 章守宇, 等. 贻贝筏式养殖区附生大型海藻与两种附着端足目的关系. 生态学杂志, 2018, 37(9): 2737-2744 [16] 孙梦雨, 汪振华, 林军, 等. 大规模筏式养殖生境中端足类群聚特征和时空差异. 上海海洋大学学报, 2024, 33(3): 702-714 [17] 杭金欣, 孙建璋. 浙江海藻原色图谱. 杭州: 浙江科学技术出版社, 1983 [18] 王铁杆, 胡仁勇, 孙庆海, 等. 浙江洞头大型海藻. 北京: 海洋出版社, 2012 [19] 毛欣欣, 蒋霞敏, 林清菁. 浙江大型海藻彩色图集. 北京: 科学出版社, 2011 [20] 程净净. 我国海域大型藻类的详细图解: 《南海常见大型海藻图鉴》和《黄、渤海及东海常见大型海藻图鉴》书评. 海洋开发与管理, 2018, 35(12): 56 [21] 国家海洋标准计量中心. 海洋调查规范第6部分: 海洋生物调查: GB/ T 12763.6—2007. 北京: 中国标准出版社, 2007 [22] 武俐, 来梦媛, 杨萌, 等. 小浪底水库早春溶解性有机质光谱特征对浮游植物群落变化的响应. 生态学报, 2025, 45(4): 1736-1747 [23] Chiuffo MC, MacDougall AS, Hierro JL. Native and non-native ruderals experience similar plant-soil feedbacks and neighbor effects in a system where they coexist. Oecologia, 2015, 179: 843-852 [24] Russo AR. The role of seaweed complexity in structuring Hawaiian epiphytal amphipod communities. Hydrobiologia, 1990, 194: 1-12 [25] 薛素燕. 中华原钩虾繁殖发育生物学与生态学初步研究. 博士论文. 青岛: 中国海洋大学, 2013 [26] Dean RL, Connell JH. Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. Journal of Experimental Marine Biology and Ecology, 1987, 109: 249-273 [27] 匡翠萍, 董智超, 顾杰, 等. 秦皇岛筏式养殖对水动力和污染物输运的影响. 同济大学学报: 自然科学版, 2019, 47(7): 967-975 [28] 崔潇. 两类端足目生物对浮筏海藻的选择性研究. 硕士论文. 上海: 上海海洋大学, 2020 [29] Ganesan M, Selvaraj K, Chithra K, et al. Epiphytism differences in Gelidiella acerosa cultivated with floating rafts and concrete blocks. Journal of Applied Phycology, 2015, 27: 399-412 [30] 赵双燕. 四种淡水钩虾的分类研究(甲壳纲: 端足目). 硕士论文. 保定: 河北大学, 2017 [31] 钟源. 端足目钩虾亚目种类养殖生态学的初步研究. 硕士论文. 青岛: 中国海洋大学, 2011 [32] Bueno M, Dena-Silva SA, Flores AAV, et al. Effects of wave exposure on the abundance and composition of amphipod and tanaidacean assemblages inhabiting intertidal coralline algae. Journal of the Marine Biological Association of the United Kingdom, 2016, 96: 761-767 [33] 蒋日进, 章守宇, 王凯, 等. 枸杞岛近岸海域食物网的稳定同位素分析. 生态学杂志, 2014, 33(4): 930-938 [34] 任先秋. 中国动物志. 北京: 科学出版社, 2006 [35] Chen YY, Edgar GJ, Fox RJ. The nature and ecological significance of epifaunal communities within marine ecosystems. Oceanography and Marine Biology, 2021, 59: 585-719 [36] 刘书荣. 贻贝筏式养殖区大型海藻对两类代表性藻栖端足目生物特征的影响. 硕士论文. 上海: 上海海洋大学, 2019 [37] Starko S, Smyth C, Kucera H. Attachment strength of the herbivorous rockweed isopod, Idotea wosnesenskii (Isopoda, Crustaceae, Arthropoda), depends on properties of its seaweed host. Journal of Experimental Marine Biology and Ecology, 2016, 477: 1-6 [38] Sotka EE. Restricted host use by the herbivorous amphipod Peramphithoe tea is motivated by food quality and abiotic refuge. Marine Biology, 2007, 151: 1831-1838 [39] Huang YM, Amsler MO, McClintock JB, et al. Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biology, 2007, 30: 1417-1430 [40] Duffy JE, Hay ME. Strong impacts of grazing amphipods on the organization of a benthic community. Ecological Monographs, 2000, 70: 237-263 [41] 叶红艳. 珊瑚藻多糖的提取优化、免疫调节活性及体外模拟消化特性的研究. 硕士论文. 南京: 南京农业大学, 2022 [42] Loke LHL, Chisholm RA. Measuring habitat complexity and spatial heterogeneity in ecology. Ecology Letters, 2022, 25: 2269-2288 [43] Srinivas T, Sukumaran S, Neetu S, et al. Diversity and functional patterns of benthic amphipods in the coralline intertidal zones of a marine national park, India. Frontiers in Marine Science, 2020, 7: 589195 [44] Vázquez-Luis M, Borg JA, Sanchez-Jerez P, et al. Habitat colonisation by amphipods: Comparison between native and alien algae. Journal of Experimental Marine Biology and Ecology, 2012, 432: 162-170 [45] Taylor RB, Cole RG. Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. Marine Ecology Progress Series, 1994, 115: 271-282 [46] Holmlund MB, Peterson CH, Hay ME. Does algal morphology affect amphipod susceptibility to fish predation? Journal of Experimental Marine Biology and Ecology, 1990, 139: 65-83 |