[1] Safriel U, Adeel Z, Niemeijer D, et al. Dryland systems// Hassan R, Scholes R, Ash N, eds. Ecosystems and Human Well-being: Current State and Trends. Washington DC: Island Press, 2005: 623-662 [2] 魏江春. 沙漠生物地毯工程——干旱沙漠治理的新途径. 干旱区研究, 2005, 22(3): 287-288 [3] Hu CX, Zhang DL, Liu YD. Research progress on algae of the microbial crusts in arid and semiarid regions. Progress in Natural Science-Materials International, 2004, 14: 289-295 [4] Evans RD, Johansen JR. Microbiotic crusts and ecosystem processes. Critical Reviews in Plant Sciences, 1999, 18: 183-225 [5] Lan SB, Wu L, Zhang DL, et al. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environmental Earth Sciences, 2012, 65: 77-88 [6] Chen LZ, Wang GH, Hong S, et al. UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. Journal of Integrative Plant Biology, 2009, 51: 194-200 [7] Harel Y, Ohad I, Kaplan A, et al. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiology, 2004, 136: 3070-3079 [8] Lan SB, Wu L, Zhang DL, et al. Desiccation provides photosynthetic protection for crust cyanobacteria Microcoleus vaginatus from high temperature. Physiologia Plantarum, 2014, 152: 345-354 [9] 郑云普, 赵建成, 张丙昌, 等. 荒漠生物结皮中藻类和苔藓植物研究进展. 植物学报, 2009, 44(3): 371-378 [10] 胡春香, 张德禄, 刘永定. 干旱区微小生物结皮中藻类研究的新进展. 自然科学进展, 2003, 13(8): 791-795 [11] Mager DM, Thomas AD. Excellular polysaccharides from cyanobacterial soil crusts: A review of their role in dry land soil processes. Journal of Arid Environments, 2011, 75: 91-97 [12] Wright DJ, Smith SC, Joardar V, et al. UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). Journal of Biological Chemistry, 2005, 280: 40271-40281 [13] Philippis RD, Sili C, Paperi R, et al. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. Journal of Applied Phycology, 2001, 13: 293-299 [14] Adessi A, Ricardo C, Philippis RD, et al. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology and Biochemistry, 2018, 116: 67-69 [15] Lan SB, Wu L, Zhang DL, et al. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. Bioresource Technology, 2015, 182: 144-150 [16] 陈兰周, 刘永定. 微鞘藻胞外多糖在沙漠土壤成土中的作用. 水生生物学报, 2002, 26(2): 155-159 [17] Colica G, Li H, Rossi F, et al. Microbias secreted exoplysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biology and Biochemistry, 2014, 68: 62-70 [18] Mager DM. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana. Soil Biology and Biochemistry, 2010, 42: 313-318 [19] Brull L, Huang Z, Thomasoates J, et al. Studies of poly-saccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: Structural characterization and effect on the complement system of polysaccharides from Nostoc commune. Journal of Phyco-logy, 2000, 36: 871-881 [20] Bertocchi C, Navarini L, Cesàro A, et al. Polysaccharides from cyanobacteria. Carbohydrate Polymers, 1990, 12: 127-153 [21] Pollierer MM, Ferlian O, Scheu S. Temporal dynamics and variation with forest type of phospholipid fatty acids in litter and soil of temperate forests across regions. Soil Biology and Biochemistry, 2015, 91: 248-257 [22] 罗达, 刘顺, 史作民, 等. 川西亚高山不同林龄云杉人工林土壤微生物群落结构. 应用生态学报, 2017, 28(2): 519-527 [23] Corneo PE, Pellegrini A, Cappellin L, et al. Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiology Ecology, 2013, 84: 588-602 [24] Gideon M, Kidron GJ, Ahuva V, et al. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiology Ecology, 1996, 21: 121-130 [25] 张丙昌, 张元明, 王敬竹. 古尔班通古特沙漠南缘典型沙垄藻类的时空分布. 中国沙漠, 2011, 31(4): 919-926 [26] 双龙, 妮萨娜, 杜江, 等. 重铬酸钾氧化-外加热法测定化探土壤样品中有机碳含量. 安徽化工, 2016, 42(4): 110-112 [27] Hammi KM, Hammami M, Rihouey C, et al. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chemistry, 2016, 212: 476-484 [28] 唐倩, 周楠, 唐东山, 等. 具鞘微鞘藻胞外多糖抗紫外辐射活性研究. 环保科技, 2015, 21(4): 16-20 [29] Dubios M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28: 350-356 [30] 杨彬君, 易骏, 龚业滔, 等. GC-MS分析牛樟芝多糖的单糖组成及其抗氧化活性. 食品工业科技, 2019, 40(12): 85-89 [31] Ikeda S, Murayama D, Tsurumaki A, et al. Rheological characteristics and supramolecular structure of the exopolysaccharide produced by Lactobacillus fermentum MTCC 25067. Carbohydrate Polymers, 2019, 218: 226-233 [32] 夏朝红, 戴奇, 房韦, 等. 几种多糖的红外光谱研究. 武汉理工大学学报, 2007, 29(1): 45-47 [33] Lan SB, Wu L, Zhang DL, et al. Effects of drought and salt stresses on man-made cyanobacterial crusts. Euro-pean Journal of Soil Biology, 2010, 46: 381-386 [34] 饶本强, 李华, 熊瑛, 等. 实验室条件下蓝藻结皮对低温光照胁迫的响应与微结构变化. 环境科学, 2012, 33(8): 2793-2803 [35] Potts M. Desiccation tolerance of prokaryotes. Microbiological Reviews, 1994, 58: 755-805 [36] Zhou XB, Ye T, Yin BF, et al. Nitrogen pools in soil covered by biological soil crusts of different successional stages in a temperate desert in Central Asia. Geoderma, 2020, 366: 114-166 [37] Chen LZ, Rossi F, Deng SQ, et al. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. Soil Biology and Biochemistry, 2014, 78: 1-9 [38] Chamizo S, Adessi A, Mugnai G, et al. Soil type and cyanobacteria species influence the macromolecular and chemical characteristics of the polysaccharidic matrix in induced biocrusts. Microbial Ecology, 2019, 78: 482-493 [39] Ge HM, Xia L, Zhou XB, et al. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp. Journal of Microbiology, 2014, 52: 179-183 [40] Liu LC, Liu YB, Zhang P, et al. Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China. Biogeosciences, 2017, 14: 3801-3814 [41] Han PP, Sun Y, Jia SR, et al. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydrate Polymers, 2014, 105: 145-151 [42] Han PP, Yao SY, Guo RJ, et al. The relationship between monosaccharide composition of extracellular polysaccharide and activities of related enzymes in Nostoc flagelliforme under different culture conditions. Carbohydrate Polymers, 2017, 174: 111-119 [43] Zhang BC, Kong WD, Wu N, et al. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China. Journal of Basic Microbiology, 2016, 56: 670-679 |