[1] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 2010, 34(1): 2-6 [2] Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 2015, 85: 133-155 [3] Wang Y, Wu WH. Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013, 64: 451-476 [4] 上官虹玉, 王传宽, 全先奎. 兴安落叶松叶化学计量特征与光合性状的权衡及其种源差异. 应用生态学报, 2023, 34(6): 1483-1490 [5] Brown JH, Gillooly JF, Allen AP, et al. Toward a metabolic theory of ecology. Ecology, 2004, 85: 1771-1789 [6] 洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响. 应用生态学报, 2013, 24(9): 2658-2665 [7] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 2005, 29(6): 141-153 [8] McCormack ML, Dickie IA, Eissenstat DM, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207: 505-518 [9] Guo D, Xia M, Wei X, et al. Anatomical traits associa-ted with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 2008, 180: 673-683 [10] 许坛, 王华田, 朱婉芮, 等. 连作杨树细根根序形态及解剖结构. 林业科学, 2015, 51(1): 119-126 [11] 周诚, 刘彤, 王庆贵, 等. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报, 2022, 44(11): 31-40 [12] 谷加存, 王东男, 夏秀雪, 等. 功能划分方法在树木细根生物量研究中的应用: 进展与评述. 植物生态学报, 2016, 40(12): 1344-1351 [13] Reich PB, Wright IJ, Lusk CH. Predicting leaf physio-logy from simple plant and climate attributes: A global GLOPNET analysis. Ecological Applications, 2007, 17: 1982-1988 [14] Wang ZQ, Huang H, Yao BQ, et al. Divergent scaling of fine-root nitrogen and phosphorus in different root diameters, orders and functional categories: A meta-analysis. Forest Ecology and Management, 2021, 495: 119384 [15] 田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说. 植物生态学报, 2021, 45(7): 682-713 [16] 平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响. 生态学报, 2014, 34(8): 1965-1974 [17] Liang X, Liu S, Wang H, et al. Variation of carbon and nitrogen stoichiometry along a chronosequence of natural temperate forest in northeastern China. Journal of Plant Ecology, 2018, 11: 339-350 [18] 马飞, 徐婷婷, 刘吉利, 等. 不同种源中间锦鸡儿碳氮磷化学计量特征研究. 西北植物学报, 2017, 37(7): 1381-1389 [19] Song Z, Hou J. Provenance differences in functional traits and N:P stoichiometry of the leaves and roots of Pinus tabulaeformis seedlings under N addition. Global Ecology and Conservation, 2020, 21: e00826 [20] Bresson CC, Vitasse Y, Kremer A, et al. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 2011, 31: 1164-1174 [21] Oleksyn J, Reich PB, Zytkowiak R, et al. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia, 2003, 136: 220-235 [22] Oleksyn J, Modrzýnski J, Tjoelker MG, et al. Growth and physiology of Picea abies populations from elevatio-nal transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 1998, 12: 573-590 [23] 杨传平, 姜静, 唐盛松, 等. 帽儿山地区21年生兴安落叶松种源试验. 东北林业大学学报, 2002, 30(6): 1-5 [24] Wang C, Han Y, Chen J, et al. Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles. Agricultural and Forest Meteorology, 2013, 177: 83-92 [25] Kilpeläinen J, Domisch T, Lehto T, et al. Root and shoot phenology and root longevity of Norway spruce saplings grown at different soil temperatures. Canadian Journal of Forest Research, 2019, 49: 1441-1452 [26] 王凯, 沈潮, 孙冰, 等. 干旱胁迫对科尔沁沙地榆树幼苗C、N、P化学计量特征的影响. 应用生态学报, 2018, 29(7): 2286-2294 [27] 徐睿, 刘静, 王利艳, 等. 不同地理种源杉木根叶功能性状与碳氮磷化学计量分析. 生态学报, 2022, 42(15): 6298-6310 [28] 闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应. 北京林业大学学报, 2016, 38(4): 36-43 [29] 陈月鹏, 李石开, 安波, 等. 亚热带树种的菌根和根外菌丝对土壤氮矿化及酶活性的影响. 应用生态学报, 2023, 34(5): 1235-1243 [30] 戴松香, 陈少良. 植物根细胞离子通道研究进展. 北京林业大学学报, 2005, 27(3): 98-103 [31] 马祥庆, 梁霞. 植物高效利用磷机制的研究进展. 应用生态学报, 2004, 15(4): 712-716 [32] Elser JJ, Dobberfuhl DR, MacKay NA, et al. Organism size, life history, and N:P stoichiometry: Toward a unified view of cellular and ecosystem processes. Bio-Science, 1996, 46: 674-684 [33] 全先奎, 王传宽. 兴安落叶松叶碳利用效率对环境变化的适应. 生态学报, 2016, 36(11): 3381-3390 [34] 王延平, 许坛, 朱婉芮, 等. 杨树细根碳、氮含量的季节动态及代际差异. 应用生态学报, 2015, 26(11): 3268-3276 [35] Fujita Y, Robroek BJ, De Ruiter PC, et al. Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity. Oikos, 2010, 119: 1665-1673 [36] Yuan ZY, Chen YH, Reich PB. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications, 2011, 2: 344 [37] Gordon WS, Jackson RB. Nutrient concentrations in fine roots. Ecology, 2000, 81: 275-280 [38] 常文静, 郭大立. 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 2008, 32(6): 1248-1257 [39] 唐仕姗, 杨万勤, 熊莉, 等. 川西亚高山三种优势树种不同根序碳氮磷化学计量特征. 应用生态学报, 2015, 26(2): 363-369 [40] Ostonen I, Püttsepp Ü, Biel C, et al. Specific root length as an indicator of environmental change. Plant Biosystems, 2007, 141: 426-442 [41] 崔晓阳. 落叶松、水曲柳的氮营养行为及其种间分异. 应用生态学报, 2001, 12(6): 815-818 [42] Liu R, Wang D. C:N:P stoichiometric characteristics and seasonal dynamics of leaf-root-litter-soil in plantations on the Loess Plateau. Ecological Indicators, 2021, 127: 107772 [43] Collignon C, Calvaruso C, Turpault MP. Temporal dynamics of exchangeable K, Ca and Mg in acidic bulk soil and rhizosphere under Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) stands. Plant and Soil, 2011, 349: 355-366 [44] 叶功富, 张立华, 林益明, 等. 滨海沙地木麻黄(Casuarina equisetifolia)人工林细根养分与能量动态. 生态学报, 2007, 27(9): 3874-3882 [45] 马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 2015, 39(2): 159-166 [46] Ågren GI. The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004, 7: 185-191 |