[1] 中国科学院中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1990, 69: 331 [2] 李振宇, 王印政. 中国苦苣苔科植物. 郑州: 河南科学技术出版社, 2005: 171-260 [3] 赖碧丹, 邓征宇, 崔忠吉, 等. 报春苣苔属新品种特异性、一致性和稳定性测试指南研制. 热带作物学报, 2022, 43(8): 1587-1594 [4] Xu MZ, Yang LH, Kong HH, et al. Congruent spatial patterns of species richness and phylogenetic diversity in karst flora: Case study of Primulina (Gesneriaceae). Journal of Systematics and Evolution, 2021, 59: 251-261 [5] 张弋. 报春苣苔属高钙蔬菜的驯化利用和品质形成分子机制研究. 博士论文. 南昌: 南昌大学, 2024 [6] Lin YL, Liu SY, Fang X, et al. The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses. Physiologia Plantarum, 2023, 175: e14005 [7] Arpiwi NL, Muksin IK, Nio SA. Drought stress decreases morphophysiological characteristics of Pongamia pinnata (L.) Pierre a biodiesel tree. Pakistan Journal of Biological Sciences, 2023, 26: 463-471 [8] 刘小岑, 吴艳碧, 田野, 等. 干旱胁迫对不同品种生姜苗期生长发育的影响. 南京农业大学学报, 2023, 47(5): 843-853 [9] Zhu LX, Li AC, Sun HC, et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress. Industrial Crops and Products, 2023, 204: 117344 [10] Zhang T, Liu CX, Chen YZ, et al. Physiological and biochemical effects of exogenous calcium on Camellia oleifera Abel under drought stress. Forests, 2023, 14: 2082 [11] Rehman A, Weng JY, Li PL, et al. Differential response of two contrasting melon (Cucumis melo L.) genotypes to drought stress. Journal of Plant Biology, 2023, 66: 519-534 [12] Talaat BN, Shawky TB, Ibrahim SA. Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany, 2015, 113: 47-58 [13] Bhandari U, Gajurel A, Khadka B, et al. Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon, 2023, 9: 13744 [14] 王林, 陈文, 黄刚, 等. 中国西南超级干旱的变化特征和多尺度异常叠加效应分析. 中国科学: 地球科学, 2024, 54(7): 2114-2132 [15] Ali-Dinar H, Munir M, Mohammed M. Drought-tolerance screening of date palm cultivars under water stress conditions in arid regions. Agronomy, 2023, 13: 2811 [16] Guo YL, Huang GM, Guo Q, et al. Increase in root density induced by coronatine improves maize drought resistance in North China. The Crop Journal, 2023, 11: 278-290 [17] Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 2015, 66: 161-186 [18] Xu JH, Li LJ, Liu YF, et al. Molecular and physiological mechanisms of strigolactones-mediated drought stress in crab apple (Malus hupehensis Rehd.) seedlings. Scientia Horticulturae, 2023, 311: 111800 [19] Guo S, Wei XF, Ma BL, et al. Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense. Stress Biology, 2023, 3: 54 [20] Singh N, Chattopadhyay D, Gupta SK. Updating the impact of drought on root exudation: A strigolactones perspective. Journal of Plant Growth Regulation, 2023, 42: 5131-5151 [21] Visentin I, Pagliarani C, Deva E, et al. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, Cell & Environment, 2020, 43: 1613-1624 [22] Mansoor S, Mir MA, Karunathilake E, et al. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. Plant Physiology and Biochemistry, 2023, 206: 108282 [23] Sedaghat M, Sarvestani ZT, Emam Y, et al. Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance. Russian Journal of Plant Physiology, 2020, 67: 733-739 [24] Bhoi A, Yadu B, Chandra J, et al. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta, 2021, 254: 28 [25] Germain A, Retailleau P, Norsikian S, et al. Contalactone, a contaminant formed during chemical synthesis of the strigolactone reference GR24 is also a strigolactone mimic. Phytochemistry, 2019, 168: 112112 [26] Sharma P, Jha AB, Dubey RS. Strigolactones: Coordination with other phytohormones and enhancement of abiotic stress responses. Environmental and Experimental Botany, 2024, 223: 105782 [27] 逯明辉, 王晓妮, 巩振辉. 外源亚精胺对辣椒幼苗干旱胁迫的缓解效应. 辣椒杂志, 2014, 12(4): 40-44 [28] 刘小锐, 黄成东, 祝红伟. 叶用莴苣叶面积测定方法的研究. 中国蔬菜, 2020(12): 78-81 [29] 朱秀云, 梁梦, 马玉. 根系活力的测定(TTC法)实验综述报告. 广东化工, 2020, 47(6): 211-212 [30] 王辉, 胡燕, 聂琴, 等. 不同氮磷钾配比对玉簪驯化苗生长的影响. 内江师范学院学报, 2016, 31(4): 25-28 [31] 徐晴晴. 紫薇转色期叶色变化的色彩参数及生理特性研究. 硕士论文. 郑州: 河南农业大学, 2022 [32] 刘凤轩. 外源蔗糖和DA-6对辽宁3种秋色叶树种秋叶变色的影响. 硕士论文. 沈阳: 沈阳农业大学, 2020 [33] 李硕. 水分亏缺下紫花苜蓿根系形态构型及其生理响应研究. 博士论文. 北京: 中国农业科学院, 2021 [34] 韦毅刚, 钟树华, 文和群. 广西苦苣苔科植物区系和生态特点研究. 云南植物研究, 2004, 26(2): 173-182 [35] 刘淑兰, 李进, 马永慧, 等. 独脚金内酯对干旱胁迫下黑果枸杞种子萌发和幼苗生理变化的影响. 草地学报, 2023, 31(1): 130-139 [36] 纠松涛, 徐岩, 张才喜, 等. 独脚金内酯及其调控植物根系生长发育的研究进展. 分子植物育种, 2021, 19(15): 5164-5171 [37] 邢红爽, 乌佳美, 陈健, 等. 植物光合作用限制因素与植被生产力研究进展. 生态学报, 2023, 43(12): 5186-5199 [38] 李爽. 外源硅对干旱胁迫下大叶女贞光合作用及叶绿素荧光特性的影响. 江苏农业科学, 2019, 47(22): 174-178 [39] 刘歆宇. 独脚金内酯对干旱胁迫下多花黑麦草生长和生理的影响. 硕士论文. 扬州: 扬州大学, 2023 [40] 李丽坚. 外源独脚金内酯对苹果幼苗碱胁迫的缓解效应. 硕士论文. 泰安: 山东农业大学, 2023 [41] Wassie WA, Andualem AM, Molla AE, et al. Growth, physiological, and biochemical responses of ethiopian red pepper (Capsicum annum L.) cultivars to drought stress. The Scientific World Journal, 2023, 2023: 4374318 [42] 庄晔. 喷施独脚金内酯对烤烟幼苗干旱胁迫的缓解效应及机理研究. 硕士论文. 洛阳: 河南科技大学, 2022 [43] 李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响. 应用生态学报, 2020, 31(5): 1543-1550 [44] 李霞, 阎秀峰, 于涛. 水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响. 应用生态学报, 2005, 16(12): 2353-2356 [45] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48: 909-930 |