欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (11): 3535-3548.doi: 10.13287/j.1001-9332.202511.034

• 综合评述 • 上一篇    下一篇

微/纳米塑料的降解机制与微生物治理研究进展

常潇1,2, 刘倩1,2, 孙梦瑶1, 钟荣珍1*   

  1. 1中国科学院东北地理与农业生态研究所, 长春 130102;
    2中国科学院大学资源与环境学院, 北京 100049
  • 收稿日期:2025-04-16 接受日期:2025-09-04 出版日期:2025-11-18 发布日期:2026-06-18
  • 通讯作者: * E-mail: zhongrongzhen@iga.ac.cn
  • 作者简介:常 潇, 男, 1998年生, 博士研究生。主要从事种养循环系统中有害物质迁移及生物危害研究。E-mail: changxiao@iga.ac.cn
  • 基金资助:
    国家自然科学基金项目(U23A20234)、长春市科技发展计划项目(24GXYSZZ11)、国家重点研发计划项目子课题(2024YFD1301105)和农业农村部神农人才计划项目(SNYCQN138-2022)

Degradation mechanisms and microbial remediation of micro- and nanoplastics: A comprehensive review

CHANG Xiao1,2, LIU Qian1,2, SUN Mengyao1, ZHONG Rongzhen1*   

  1. 1Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
    2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-04-16 Accepted:2025-09-04 Online:2025-11-18 Published:2026-06-18

摘要: 微/纳米塑料因其环境持久性和潜在生态毒性,已成为全球关注的新兴污染物。本文综述了其生成途径与微生物降解机制,并对微生物治理应用潜力进行了评估。微/纳米塑料的非生物降解过程主要包括光氧化、热裂解、机械破碎、水解及臭氧氧化降解。微生物通过分泌解聚酶将高分子聚合物逐步降解为低聚物和单体,并最终完成对微/纳米塑料的生物矿化过程。微/纳米塑料的微生物治理技术主要包括利用耐高温菌开展超高温堆肥处理,以及通过基因工程改造菌株,使其具备合成微/纳米塑料降解酶的能力。然而,这些技术目前仍面临降解效率低、环境适应性差和工程化放大困难等瓶颈问题。未来研究需加强针对风化/老化条件下塑料的试验模拟,重点挖掘和利用极端环境微生物,并开发基于合成生物学改造与优化的降解酶系。同时,应推动其与固废或污泥处理过程的耦合应用与规模化验证,以期为微/纳米塑料污染治理提供技术支撑。

关键词: 塑料废弃物, 微塑料, 微生物, 酶, 降解

Abstract: Micro/nano plastics are emerging pollutants of global concerns due to their environmental persistence and potential ecological toxicity. We reviewed the generation pathways and microbial degradation mechanisms of micro/nano plastics, and assessed the application potential of microbial remediation. The abiotic degradation pro-cesses of micro/nano plastics mainly include photo-oxidation, thermal cracking, mechanical crushing, hydrolysis, and ozone degradation. Microorganisms gradually degrade high-molecular-weight polymers into oligomers and monomers by secreting depolymerases, and ultimately complete the biological mineralization process of micro/nano plastics. Microbial treatment technologies for the degradation of micro/nano plastics mainly include the use of high-tempera-ture resistant bacteria for ultra-high temperature composting and the genetic engineering of strains to synthesize enzymes capable of degrading micro/nano plastics. The bottlenecks for these technologies include low degradation efficiency, poor environmental adaptability, and difficulties in engineering scale-up. Future research should enhance experimental simulations of plastics under weathering or aging conditions, focus on exploring and utilizing microorganisms in extreme environments, and develop degradation enzyme systems based on synthetic biology for modification and optimization. Meanwhile, efforts should be made to promote their coupled application and large-scale verification with solid waste or sludge treatment processes, in order to provide technical support for the effective control of micro/nano plastic pollution.

Key words: plastic waste, microplastic, microorganism, enzyme, degradation