
应用生态学报 ›› 2025, Vol. 36 ›› Issue (11): 3535-3548.doi: 10.13287/j.1001-9332.202511.034
常潇1,2, 刘倩1,2, 孙梦瑶1, 钟荣珍1*
收稿日期:2025-04-16
接受日期:2025-09-04
出版日期:2025-11-18
发布日期:2026-06-18
通讯作者:
* E-mail: zhongrongzhen@iga.ac.cn
作者简介:常 潇, 男, 1998年生, 博士研究生。主要从事种养循环系统中有害物质迁移及生物危害研究。E-mail: changxiao@iga.ac.cn
基金资助:CHANG Xiao1,2, LIU Qian1,2, SUN Mengyao1, ZHONG Rongzhen1*
Received:2025-04-16
Accepted:2025-09-04
Online:2025-11-18
Published:2026-06-18
摘要: 微/纳米塑料因其环境持久性和潜在生态毒性,已成为全球关注的新兴污染物。本文综述了其生成途径与微生物降解机制,并对微生物治理应用潜力进行了评估。微/纳米塑料的非生物降解过程主要包括光氧化、热裂解、机械破碎、水解及臭氧氧化降解。微生物通过分泌解聚酶将高分子聚合物逐步降解为低聚物和单体,并最终完成对微/纳米塑料的生物矿化过程。微/纳米塑料的微生物治理技术主要包括利用耐高温菌开展超高温堆肥处理,以及通过基因工程改造菌株,使其具备合成微/纳米塑料降解酶的能力。然而,这些技术目前仍面临降解效率低、环境适应性差和工程化放大困难等瓶颈问题。未来研究需加强针对风化/老化条件下塑料的试验模拟,重点挖掘和利用极端环境微生物,并开发基于合成生物学改造与优化的降解酶系。同时,应推动其与固废或污泥处理过程的耦合应用与规模化验证,以期为微/纳米塑料污染治理提供技术支撑。
常潇, 刘倩, 孙梦瑶, 钟荣珍. 微/纳米塑料的降解机制与微生物治理研究进展[J]. 应用生态学报, 2025, 36(11): 3535-3548.
CHANG Xiao, LIU Qian, SUN Mengyao, ZHONG Rongzhen. Degradation mechanisms and microbial remediation of micro- and nanoplastics: A comprehensive review[J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3535-3548.
| [1] Tobías D, Montañez J, Salmerón I, et al. Microbial Bioreactors for Industrial Molecules. New York: Wiley International Publishing, 2023: 131-160 [2] Zhang Y, Cai C, Gu Y, et al. Microplastics in plant-soil ecosystems: A meta-analysis. Environmental Pollution, 2022, 308: 119718 [3] Amaral LA, Zettler ER, Slikas B, et al. The biogeography of the plastisphere: Implications for policy. Frontiers in Ecology and the Environment, 2015, 13: 541-546 [4] Mukesh K, Veena C, Ravi K, et al. Microplastics, their effects on ecosystems, and general strategies for mitigation of microplastics: A review of recent developments, challenges, and future prospects. Environmental Pollution and Management, 2025, 2: 87-105 [5] 孙梦瑶, 郭家阳, 王欣奕, 等. 微塑料来源、分布及其对植物、动物和人体危害研究进展. 应用生态学报, 2024, 35(8): 2301-2312 [6] Alijagic A, Kotlyar O, Larsson M, et al. Immunotoxic, genotoxic, and endocrine disrupting impacts of polya-mide microplastic particles and chemicals. Environment International, 2024, 183: 108412 [7] Ali SS, Elsamahy T, Koutra E, et al. Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 2021, 771: 144719 [8] Pilapitiya P, Ratnayake A. The world of plastic waste: A review. Cleaner Materials, 2024, 11: 100220 [9] Zhang K, Hamidian AH, Tubić A, et al. Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 2021, 274: 116554 [10] Shaista M, Nafiaah N, Gowhar R, et al. Plastic material degradation and formation of microplastic in the environment: A review. Materials Today, 2022, 56: 3254-3260 [11] Stock F, Kochleus C, Bänsch B, et al. Sampling techniques and preparation methods for microplastic analyses in the aquatic environment: A review. TrAC Trends in Analytical Chemistry, 2019, 113: 84-92 [12] Azora K, Darragh D, Niklas W, et al. Microplastics in aquaculture: Potential impacts on inflammatory processes in Nile tilapia. Heliyon, 2024, 10: e30403 [13] Wayman C, Niemann H. The fate of plastic in the ocean environment: A mini review. Environmental Science: Processes & Impacts, 2021, 23: 198-212 [14] Chamas A, Moon H, Zheng J, et al. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 2020, 8: 3494-3511 [15] Oluwoye I, Machuca LL, Higgins S, et al. Degradation and lifetime prediction of plastics in subsea and offshore infrastructures. Science of the Total Environment, 2023, 904: 166719 [16] 汪庆, 邱靖昊, 孙岩, 等. 河口微塑料对抗生素抗性基因的影响研究进展. 应用生态学报, 2024, 35(10): 2916-2924 [17] UN Environment Programme. From Pollution to Solution: A global Assessment of Marine Litter and Plastic Pollution[EB/OL]. (2021-07-07)[2023-05-16]. https://www.unep.org/interactives/pollution-to-solution/?lang=EN [18] Domenech J, Marcos R. Pathways of human exposure to microplastics, and estimation of the total burden. Current Opinion in Food Science, 2021, 39: 144-151 [19] Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science, 2015, 347: 768-771 [20] Amaneesh C, Anna S, Silpa PS, et al. Gross negligence: Impacts of microplastics and plastic leachates on phytoplankton community and ecosystem dynamics. Environmental Science & Technology, 2023, 57: 5-24 [21] Pyrek C. Review of plastic paradise: The great Pacific garbage patch. The Contemporary Pacific, 2016, 28: 268-270 [22] Oda K, Wlodawer A. Development of enzyme-based approaches for recycling PET on an industrial scale. Biochemistry, 2024, 63: 369-401 [23] Domenech J, Marcos R. Pathways of human exposure to microplastics, and estimation of the total burden. Current Opinion in Food Science, 2021, 39: 144-151 [24] Shahnawaz M, Sangale MK, Ade AB. Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria. Environmental Science and Pollution Research, 2016, 23: 14621-14635 [25] Salma S, Md A, Kamal H, et al. Ecological risk assessment of microplastics and mesoplastics in six common fishes from the Bay of Bengal Coast. Marine Pollution Bulletin, 2024, 204: 116544 [26] Wang Y, Jing S, Hou P, et al. Soil erosion is a major drive for nano & micro-plastics to enter riverine systems from cultivated land. Water Research, 2024, 256: 121597 [27] Jain R, Gaur A, Suravajhala R, et al. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. Science of the Total Environment, 2023, 905: 167098 [28] Wang LW, Michael B, Jörg R, et al. Plastic-rock complexes as hotspots for microplastic generation. Environmental Science & Technology, 2023, 57: 7009-7017 [29] Viel T, Manfra L, Zupo V, et al. Biodegradation of plastics induced by marine organisms: Future perspectives for bioremediation approaches. Polymers, 2023, 15: 2673 [30] Oliveira J, Belchior A, Silva VD, et al. Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization. Frontiers in Marine Science, 2020, 7: 567126 [31] Bher A, Mayekar PC, Auras RA, et al. Biodegradation of biodegradable polymers in mesophilic aerobic environments. International Journal of Molecular Sciences, 2022, 23: 12165 [32] Dash AK, Pradhan A, Sukla LB. Environmental Science and Engineering. Amsterdam, Switzerland: Springer Nature, 2024: 113-136 [33] Kwon S, Zambrano MC, Venditti RA, et al. Aerobic aquatic biodegradation of bio-based and biodegradable polymers: Kinetic modeling and key factors for biodegradability. International Biodeterioration & Biodegradation, 2023, 185: 105671 [34] Tyagi P, Agate S, Velev OD, et al. A critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications. Environmental Science & Technology, 2022, 56: 2071-2095 [35] Liu L, Xu M, Ye Y, et al. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. Science of the Total Environment, 2022, 806: 151312 [36] Saharudin MS, Atif R, Shyha I, et al. The degradation of mechanical properties in polymer nano-composites exposed to liquid media: A review. RSC Advances, 2016, 6: 1076-1089 [37] Malla MA, Indhur R, Malambule N, et al. Bioreme-diation: Removing Microplastics from Soil. Washington, DC: American Chemical Society Press, 2023: 1-18 [38] Ciuffi B, Fratini E, Rosi L. Plastic pretreatment: The key for efficient enzymatic and biodegradation processes. Polymer Degradation and Stability, 2024, 222: 110698 [39] Gowthami A, Syed M, Raju P, et al. Biodegradation efficacy of selected marine microalgae against low-density polyethylene (LDPE): An environment friendly green approach. Marine Pollution Bulletin, 2023, 190: 114889 [40] Fernandes JC, Campelo PH, Abreu J, et al. Effect of polyvinyl alcohol and carboxymethylcellulose on the technological properties of fish gelatin films. Scientific Reports, 2022, 12: 10497 [41] Wolter B, Hintzen HMT, Welsing G, et al. Good Microbes in Medicine, Food production, Biotechnology, Bioremediation, and Agriculture. New York: Wiley International Publishing, 2022: 294-311 [42] Shahnawaz M, Sangale MK, Ade AB. Bioremediation Technology for Plastic Waste. Singapore: Springer Nature Press, 2019: 45-69 [43] Jain R, Gaur A, Suravajhala R, et al. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. Science of the Total Environment, 2023, 905: 167098 [44] Thapa BS, Pandit S, Mishra RK, et al. Emergence of per- and poly-fluoroalkyl substances (PFAS) and advances in the remediation strategies. Science of the Total Environment, 2024, 916: 170142 [45] Lin Z, Jin T, Zou T, et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environmental Pollution, 2022, 304: 119159 [46] Liu H, Li Y, Tan Q, et al. Bioremediation: Removing Microplastics from Soil. Washington, DC: American Chemical Society Press, 2023: 81-97 [47] Herrera DAG, Mojicevic M, Pantelic B, et al. Exploring microorganisms from plastic-polluted sites: Unvei-ling plastic degradation and PHA production potential. Microorganisms, 2023, 11: 2914 [48] Duarah R, Aleksic I, Milivojevic D, et al. Development of nystatin-based antifungal, biodegradable polymer composite materials for food packaging via melt proce-ssing approach. Journal of Applied Polymer Science, 2023, 140: e54663 [49] Pantelic B, Araujo JA, Jeremic S, et al. A novel Baci-llus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate. Environmental Technology & Innovation, 2023, 32: 103316 [50] Yuan Y, Liu P, Zheng Y, et al. Unique Raoultella species isolated from petroleum contaminated soil degrades polystyrene and polyethylene. Ecotoxicology and Environmental Safety, 2023, 263: 115232 [51] Nikolaivits E, Taxeidis G, Gkountela C, et al. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. Journal of Hazardous Materials, 2022, 434: 128900 [52] Cai Z, Li M, Zhu Z, et al. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorga-nisms, 2023, 11: 1661 [53] Auta HS, Emenike CU, Fauziah SH. Screening of Baci-llus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environmental Pollution, 2017, 231: 1552-1559 [54] Austin HP, Allen MD, Donohoe BS, et al. Characteri-zation and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 4350-4357 [55] Yang J, Yang Y, Wu WM, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 2014, 48: 13776-13784 [56] Skariyachan S, Manjunatha V, Sultana S, et al. Novel bacterial consortia isolated from plastic garbage proce-ssing areas demonstrated enhanced degradation for low density polyethylene. Environmental Science and Pollution Research, 2016, 23: 18307-18319 [57] Yang Y, Yang J, Wu WM, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environmental Science & Technology, 2015, 49: 12087-12093 [58] Li Z, Wei R, Gao M, et al. Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of Environmental Management, 2020, 263: 110402 [59] Kumari A, Chaudhary DR, Jha B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environmental Science and Pollution Research, 2019, 26: 1507-1516 [60] Rathinamoorthy R, Balasaraswathi S. Microfiber Pollution. Singapore: Springer Nature, 2022: 205-243 [61] Emisha L, Wilfred N, Kavitha S, et al. Biodegradation of microplastics: Advancement in the strategic approaches towards prevention of its accumulation and harmful effects. Chemosphere, 2024, 346: 140661 [62] Temporiti ME, Nicola L, Nielsen E, et al. Fungal enzymes involved in plastics biodegradation. Microorga-nisms, 2022, 10: 1180 [63] Vertommen M, Nierstrasz VA, Veer M, et al. Enzyma-tic surface modification of poly(ethylene terephthalate). Journal of Biotechnology, 2005, 120: 376-386 [64] Webb HK, Arnott J, Crawford RJ, et al. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 2013, 5: 1-18 [65] Krueger MC, Hofmann U, Moeder M, et al. Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven fenton chemistry. PLoS One, 2015, 10(7): e0131773 [66] Cregut M, Bedas M, Durand MJ, et al. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnology Advances, 2013, 31: 1634-1647 [67] lvarez J, Domínguez L, Vargas M, et al. Biodegradative activities of selected environmental fungi on a polye-ster polyurethane varnish and polyether polyurethane foams. Applied and Environmental Microbiology, 2016, 82: 5225-5235 [68] Gómez LD, Moreno DA, Poutou RA, et al. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One, 2018, 13(9): e0203786 [69] Wei R, Zimmermann W. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnology, 2017, 10: 1302-1307 [70] Restrepo JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene: A review. International Biodeterioration & Biodegradation, 2014, 88: 83-90 [71] Takahashi N, Terauchi Y, Tanaka T, et al. Involvement of ionic interactions in self-assembly and resultant rodlet formation of class Ⅰ hydrophobin RolA from Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry, 2023, 87: 857-864 [72] Puspitasari N, Tsai SL, Lee CK. Fungal hydrophobin RolA enhanced PETase hydrolysis of polyethylene terephthalate. Applied Biochemistry and Biotechnology, 2021, 193: 1284-1295 [73] Sheik S, Chandrashekar KR, Swaroop K, et al. Biode-gradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. International Biodeterioration & Biodegradation, 2015, 105: 21-29 [74] Gao R, Liu R, Sun C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. Journal of Hazardous Materials, 2022, 431: 128617 [75] Vzquez L, Oliart M, García A, et al. Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiology Spectrum, 2021, 9: e00976-21 [76] Tian L, Kolvenbach B, Corvini N, et al. Mineralisation of 14C-labelled polystyrene plastics by Penicillium varia-bile after ozonation pre-treatment. New Biotechnology, 2017, 38: 101-105 [77] Hung CS, Barlow DE, Varaljay VA, et al. The biodegradation of polyester and polyester polyurethane coatings using Papiliotrema laurentii. International Biodeterioration & Biodegradation, 2019, 139: 34-43 [78] Khatoon N, Jamal A, Ali MI. Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environmental Technology, 2019, 40: 1366-1375 [79] Rosenboom JG, Langer R, Traverso G. Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7: 117-137 [80] James LF, Dudley KJ, Te V, et al. A hot topic: Thermophilic plastic biodegradation. Trends in Biotechno-logy, 2023, 41: 1117-1126 [81] Mohanan N, Montazer Z, Sharma PK, et al. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 2020, 11: 580709 [82] Acarer S. Microplastics in wastewater treatment plants: Sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants. Water Science and Technology, 2023, 87: 685-710 [83] Liu X, Yuan W, Di M, et al. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China. Chemical Engineering Journal, 2019, 362: 176-182 [84] Chen Z, Zhao W, Xing R, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. Journal of Hazardous Materials, 2020, 384: 121271 [85] Chia WY, Ying Tang DY, Khoo KS, et al. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 2020, 4: 100065 [86] Chen Z, Li L, Hao L, et al. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics. Frontiers of Environmental Science & Engineering, 2021, 16: 2 [87] Moog D, Schmitt J, Senger J, et al. Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 2019, 18: 171 [88] Di G, Taunt HN, Berto M, et al. A PETase enzyme synthesised in the chloroplast of the microalga Chlamydomonas reinhardtii is active against post-consumer plastics. Scientific Reports, 2023, 13: 10028 [89] James S, Collins FH, Welkhoff PA, et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-saharan africa: Recommendations of a scientific working group. The American Journal of Tropical Medicine and Hygiene, 2018, 98: 1-49 |
| [1] | 崔瀚文, 杨子, 赵霞, 蒋晓轩, 张安宁, 张淼, 陈书燕, 肖洒. 灌丛化和气候变暖对青藏高原高寒草甸β-土壤多功能性的影响 [J]. 应用生态学报, 2025, 36(9): 2745-2752. |
| [2] | 竹京玲, 吕杨, 黄昊, 刘心语, 王懿祥. 抛荒毛竹林带状改造对土壤碳氮含量及酶活性动态的影响 [J]. 应用生态学报, 2025, 36(9): 2753-2761. |
| [3] | 黎浩文, 梁永鑫, 黄英梅, 梁春梅, 张俊涛, 刘可星. 生物炭对红壤区林地土壤性质及细菌群落的影响 [J]. 应用生态学报, 2025, 36(9): 2771-2781. |
| [4] | 李玲慧, 刘怡君, 王怡萌, 王铭. 长白山退化泥炭沼泽恢复过程中土壤活性有机碳组分和酶活性变化 [J]. 应用生态学报, 2025, 36(8): 2361-2369. |
| [5] | 陈美凤, 高英志. 15N稳定同位素技术在陆地生态系统生物固氮研究中的应用 [J]. 应用生态学报, 2025, 36(7): 1952-1960. |
| [6] | 刘宁宁, 董慧, 王守涛, 郝景祥, 杨立学. 目标树经营对兴安落叶松林土壤胞外酶活性和真菌群落结构的影响 [J]. 应用生态学报, 2025, 36(7): 2009-2018. |
| [7] | 朱雨, 李杰, 刘丽君, 韦柳红, 陈淑婷, 邓璐嫔, 朱同彬, 段敏. 亚热带岩溶区森林不同土壤氮水平下固氮植物对根际土壤磷含量的影响 [J]. 应用生态学报, 2025, 36(7): 2019-2027. |
| [8] | 杨倩, 卫甜, 朱锦磊, 刘怀阿, 吕敏. 江苏省稻田马唐对3种乙酰辅酶A羧化酶抑制剂的抗性和靶标基因突变 [J]. 应用生态学报, 2025, 36(7): 2083-2091. |
| [9] | 孙西燕, 祁若曈, 李宏旭, 郑兰香. 宁夏盐碱区排水沟不同类型岸边带氨氧化过程及其影响因子 [J]. 应用生态学报, 2025, 36(7): 2201-2212. |
| [10] | 丁宏广, 杜思懿, 贾瀚文, 杨弦, 潘莹. 红树林不同深度沉积物的细菌群落组成 [J]. 应用生态学报, 2025, 36(7): 2223-2229. |
| [11] | 曾子茵, 余涵霞, 周启梦, 游俊杰, 李伟华. 氨氧化微生物在粉葛替代薇甘菊过程中的作用 [J]. 应用生态学报, 2025, 36(6): 1849-1858. |
| [12] | 徐玲, 薛丹, 孙嘉悦, 邹庆, 黄贝贝, 刘恋, 吴林. 不同营养类型泥炭地土壤酶活性及其化学计量特征 [J]. 应用生态学报, 2025, 36(6): 1880-1888. |
| [13] | 赵书文, 化佳敏, 潘一诺, 韩迎新, 郑雅文, 蔺吉祥, 杨青杰, 王竞红. 根系质外体对植物矿质营养元素调控机理的研究进展 [J]. 应用生态学报, 2025, 36(6): 1923-1932. |
| [14] | 谢雨霜, 韩冰鑫, 柳荻, 雷怡婷, 王晓春. 干旱对白桦和水曲柳木质部形成过程和生长的影响 [J]. 应用生态学报, 2025, 36(5): 1289-1297. |
| [15] | 郭伟, 董正武, 李光莹, 许延琴. 新疆柴窝堡湖滨荒漠区4种灌木生理生化特性的季节变化 [J]. 应用生态学报, 2025, 36(5): 1350-1360. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
辽公网安备21010302000574号
辽ICP备05000862号-2
版权所有 © 《应用生态学报》编辑部