[1] 王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题. 地球科学进展, 2021, 36(9): 980-989 [2] 刘任涛, 程静. 黄河“几字弯”的地理界定及主要生态问题. 应用生态学报, 2025, 36(2): 383-394. [3] 唐克丽, 侯庆春, 王斌科, 等. 黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向. 中国科学院水利部西北水土保持研究所集刊, 1993(18): 2-15 [4] Yi CQ, Fan J. Application of HYDRUS-1D model to provide antecedent soil water contents for analysis of runoff and soil erosion from a slope on the Loess Plateau. Catena, 2016, 139: 1-8 [5] Feng X, Fu BJ, Piao SL, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6: 1019-1022 [6] Holl KD, Brancalion PH. Tree planting is not a simple solution. Science, 2020, 368: 580-581 [7] 王雅舒, 李小雁, 石芳忠, 等. 退耕还林还草工程加剧黄土高原退耕区蒸散发. 科学通报, 2019, 64(5-6): 588-599 [8] Schwärzel K, Zhang LL, Montanarella LC, et al. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Global Change Bio-logy, 2019, 26: 944-959 [9] Chen HS, Shao MA, Li YY. Soil desiccation in the Loess Plateau of China. Geoderma, 2008, 143: 91-100 [10] Zhang J, Wang L. The impact of land use on water loss and soil desiccation in the soil profile. Hydrogeology Journal, 2017, 26: 185-196 [11] Huang TM, Pang ZH. Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeology Journal, 2011, 19: 177-186 [12] Huang TM, Pang ZH, Liu JL, et al. Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: Insights from environmental tracers. Hydrogeology Journal, 2017, 25: 2049-2065 [13] Li Z, Chen X, Liu WZ, et al. Determination of groundwater recharge mechanism in the deep loessial unsaturated zone by environmental tracers. Science of the Total Environment, 2017, 586: 827-835 [14] 李玉山. 黄土区土壤水分循环特征及其对陆地水分循环的影响. 生态学报, 1983, 3(2): 91-101 [15] 李玉山. 黄土高原治理开发与黄河断流的关系. 水土保持通报, 1997, 17(6): 41-45 [16] 李玉山. 黄土高原森林植被对陆地水循环影响的研究. 自然资源学报, 2001, 16(5): 427-432 [17] 朱显谟. 重建土壤水库是黄土高原治本之道. 中国科学院院刊, 2006, 21(4): 320-324 [18] Wang YH, Yu PT, Karl-Heinz F, et al. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology, 2011, 4: 277-287 [19] 张宝庆, 邵蕊, 赵西宁, 等. 大规模植被恢复对黄土高原生态水文过程的影响. 应用基础与工程科学学报, 2020, 28(3): 595-605 [20] 胡春宏, 张晓明. 黄土高原水土流失治理与黄河水沙变化. 水利水电技术, 2020, 51(1): 1-11 [21] Yin J, He F, Xiong YJ, et al. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrology and Earth System Sciences, 2017, 21: 183-196 [22] Liang W, Bai D, Wang FY, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resources Research, 2015, 51: 6500-6519 [23] Zuo DP, Xu ZX, Yao WY, et al. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Science of the Total Environment, 2016, 544: 238-250 [24] 唐克丽. 中国水土保持. 北京: 科学出版社, 2004: 387-573 [25] 张建军, 纳磊, 董煌标, 等. 黄土高原不同植被覆盖对流域水文的影响. 生态学报, 2008, 28(8): 3597-3604 [26] 冉大川, 刘斌, 罗全华, 等. 泾河流域水土保持措施减水减沙作用分析. 人民黄河, 2001, 23(2): 6-8 [27] Zhao M, Zhang AJ, Velicogna J, et al. Ecological restoration impact on total terrestrial water storage. Nature Sustainability, 2020, 4: 56-62 [28] 秦洁, 司建华, 贾冰,等. 巴丹吉林沙漠植被群落特征与土壤水分关系研究. 干旱区研究, 2021, 38(1): 207-222 [29] 范磊, 侯光才, 陶正平. 毛乌素沙漠萨拉乌苏组地下水特征与植被分布关系. 水土保持学报, 2018, 32(4): 151-157 [30] 裴艳武, 黄来明, 邵明安, 等. 毛乌素沙地不同地下水位埋深下土壤水补给特征及影响因素. 农业工程学报, 2021, 37(12): 108-116 [31] 张竞, 王旭升, 胡晓农, 等. 巴丹吉林沙漠湖泊水分补给机制的模拟: 以苏木吉林湖区为例. 湖泊科学, 2017, 29(2): 467-479 [32] 陈建生, 赵霞, 盛雪芬, 等. 巴丹吉林沙漠湖泊群与沙山形成机理研究, 科学通报, 2006, 51(23): 2789-2796 [33] 李品芳, 李保国. 毛乌素沙地水分蒸发和草地蒸散特征的比较研究. 水利学报, 2000, 31(3): 24-28 [34] 杨梅焕, 李扬, 王涛, 等. 毛乌素沙地植被水分利用效率时空变化特征及其对水热条件的响应. 测绘通报, 2023(7): 44-50 [35] Ge JM, Fan J, Yuan HY, et al. Soil water depletion and restoration under inter-conversion of food crop and alfalfa with three consecutive wet years. Journal of Hydrology, 2020, 585: 124851 [36] Peng SS, Piao SL, Zeng ZZ, et al. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 2915-2919 [37] Zheng Y, Dong L, Xia Q, et al. Effects of revegetation on climate in the Mu Us Sandy Land of China. Science of the Total Environment, 2020, 739: 139958 [38] Ge J, Pitman AJ, Guo WD, et al. Impact of revegetation of the Loess Plateau of China on the regional growing season water balance. Hydrology and Earth System Sciences, 2020, 24: 515-533 [39] van Dijke AJH, Herold M, Mallick K, et al. Shifts in regional water availability due to global tree restoration. Nature Geoscience, 2022, 15: 363-368 [40] Zhao X, Fan J, Li MH. Afforestation may not be the primary choice for vegetation restoration in Agricultural Pastoral Ecotone of the Loess Plateau, China. Ecohydrology, 2025, 18: e70038 [41] 吕厚远, 刘东生, 郭正堂. 黄土高原地质、历史时期古植被研究状况, 科学通报, 2003, 48(1): 2-7 [42] 朱志诚. 黄土高原森林草原的基本特征. 地理科学, 1994, 14(2): 152-156 [43] Zhao X, Fan J. Response of tree sap flow rate to soil water and atmospheric environment, and adaptability to drought in the Loess Plateau region of China. Forest Ecology and Management, 2024, 565: 122007 [44] Wang X, Zhou G, Wang J, et al. Synergistic effects of organic materials and clay on maize yield and water use efficiency in sandy soil. Land Degradation & Development, 2025, DOI: 10.1002/ldr.70180 [45] 钱贵霞, 王晓欣, 李武, 等. 中国从防沙治沙到管沙用沙的演变过程与实现路径. 应用生态学报, 2024, 35(1): 8-16 |