欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2023, Vol. 34 ›› Issue (8): 2185-2193.doi: 10.13287/j.1001-9332.202308.012

• • 上一篇    下一篇

大气CO2和O3浓度升高对水稻根际土壤胞外酶活性的影响

冷鹏1,2, 王建青1,2*, 谭云燕1,2, 邵亚军1,2, 王丽燕1,2, 施秀珍1,2, 张国友3   

  1. 1福建师范大学地理科学学院, 福州 350117;
    2福建师范大学湿润亚热带生态-地理过程教育部重点实验室, 福州 350117;
    3南京信息工程大学应用气象学院江苏省农业气象重点实验室, 南京 210044
  • 收稿日期:2023-02-28 接受日期:2023-06-26 出版日期:2023-08-15 发布日期:2024-02-15
  • 通讯作者: *E-mail: jianqingwang@aliyun.com
  • 作者简介:冷 鹏, 男, 1999年生, 硕士研究生。主要从事全球气候变化和土壤生态学研究。E-mail: lengpeng0206@163.com
  • 基金资助:
    国家自然科学基金项目(42077209, 32271679)和福建省自然科学基金项目(2020J01186)

Effects of elevated carbon dioxide (CO2)and ozone (O3)concentrations on ectoenzyme activities in rice rhizospheric soil

LENG Peng1,2, WANG Jianqing1,2*, TAN Yunyan1,2, SHAO Yajun1,2, WANG Liyan1,2, SHI Xiuzhen1,2, ZHANG Guoyou3   

  1. 1School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China;
    2Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350017, China;
    3Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2023-02-28 Accepted:2023-06-26 Online:2023-08-15 Published:2024-02-15

摘要: 大气二氧化碳(CO2)和臭氧(O3)浓度升高是全球气候变化的主要特征之一。土壤胞外酶作为维持土壤生态系统服务功能的重要参与者,其活性对于大气CO2和O3浓度升高的响应特征及驱动机制研究,以及应对并缓解未来全球气候变化具有重要意义。本研究采用开顶式气室(OTCs)分别模拟大气CO2浓度升高(环境大气+200 μmol·mol-1,eCO2)、大气O3浓度升高(环境大气+0.04 μmol·mol-1,eO3)及其交互处理(环境大气+200 μmol·mol-1 CO2+0.04 μmol·mol-1 O3,eCO2+eO3),探究水稻根际土壤胞外酶活性对大气CO2和O3浓度升高的响应。结果表明:与对照(环境大气)相比,eCO2处理的土壤β-葡萄糖苷酶(βG)活性显著提高73.0%,而多酚氧化酶(PHO)、过氧化物酶(PEO)、酸性磷酸酶(AP)活性分别显著降低48.9%、46.6%和72.9%,纤维素水解酶(CBH)和β-N-乙酰氨基葡萄糖苷酶(NAG)活性则无明显变化;eO3处理的土壤CBH、AP活性分别显著降低34.2%和30.4%;eCO2+eO3处理的土壤PHO、AP活性分别显著降低87.3%和32.3%。主坐标分析、置换多元方差分析和冗余分析显示,大气CO2和O3浓度升高均可显著影响土壤胞外酶活性,且大气CO2浓度升高对土壤胞外酶活性的影响程度高于O3浓度升高;根系氮含量、根系碳氮比、土壤硝态氮和土壤微生物生物量碳是土壤胞外酶活性的主要驱动因子;大气O3浓度升高能够部分中和大气CO2浓度升高对土壤胞外酶活性的影响。综上,大气CO2和O3浓度升高抑制了大部分土壤胞外酶活性,表明未来气候变化潜在威胁着农田土壤生态系统服务功能。

关键词: 气候变化, 土壤胞外酶活性, CO2浓度升高, O3浓度升高, 开顶式气室(OTC)

Abstract: Rising atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are the main global change drivers. Soil ectoenzymes play an important role in maintaining soil ecosystem services. Exploring the responses of soil ectoenzymes to elevated CO2 and O3 concentrations is important for combating global climate change. In this study, we simulated elevated CO2 concentrations (+200 μmol·mol-1, eCO2), elevated O3 concentrations (0.04 μmol·mol-1, eO3), and their combination (eCO2+eO3) in open-top chambers (OTCs), and investigated the responses of rhizospheric soil ectoenzyme activities. The results showed that eCO2 significantly increased the β-D-Glucosidase (βG) activity by 73.0%, and decreased that of polyphenol oxidase (PHO), peroxidase (PEO), and acid phosphatase (AP) by 48.9%, 46.6% and 72.9% respectively, but did not affect that of cellulose hydrolase (CBH) and β-N-Acetylglucosaminidase (NAG). eO3 significantly reduced the activities of CBH and AP by 34.2% and 30.4%, respectively. The activities of PHO and AP were reduced by 87.3% and 32.3% under the eCO2+eO3 compared with the control, respectively. Results of the principal coordinate analysis, permutation multivariate analysis of variance and redundancy analysis showed that both elevated CO2 and O3 significantly affected soil ectoenzyme activities, with stronger effects of elevated CO2 than elevated O3. Root nitrogen content, root carbon to nitrogen ratio, soil microbial biomass carbon and nitrate nitrogen were the main drivers of soil ectoenzyme activities under elevated CO2 and O3. Elevated O3 could partially neutralize the effects of elevated CO2 on soil ectoenzyme activities. In conclusion, elevated CO2 and O3 restrained the activities of most soil ectoenzyme, suggesting that climate change would threat soil ecosystem services and functions in the agroecosystem.

Key words: climate change, soil ectoenzyme activity, elevated CO2 concentration, elevated O3 concentration, open-top chamber (OTC).