[1] 张佳宝, 林先贵, 李晖. 新一代中低产田治理技术及其在大面积均衡增产中的潜力. 中国科学院院刊, 2011, 26(4): 375-382 [2] 孙波, 朱安宁, 姚荣江, 等. 潮土、红壤和盐碱地障碍消减技术与产能提升模式研究进展. 土壤学报, 2023, 60(5): 1231-1247 [3] 徐春燕, 张倩, 贠一鸣, 等. 有机肥替代化学氮肥对冬小麦-夏玉米产量和土壤肥力的影响. 河南农业大学学报, 2025, 59(1): 79-90 [4] Cui ZL, Yue SC, Wang GL, et al. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environmental Science & Technology, 2013, 47: 6015-6022 [5] 张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展. 植物营养与肥料学报, 2017, 23(4): 1065-1076 [6] 刘小媛, 杨劲松, 姚荣江. 化肥减量配施黄腐酸降低盐渍农田NaCl含量提高氮磷养分有效性的协同效应. 植物营养与肥料学报, 2021, 27(8): 1339-1350 [7] 陈静, 崔文芳, 鲁富宽, 等. 有机肥/腐植酸和菌剂的化肥减量技术对甜糯玉米产量及土壤性质的影响. 西南农业学报, 2022, 35(9): 2077-2085 [8] 梁嘉敏, 霍鹏举, 郭涛, 等. 木质素基腐植酸液体肥料对土壤生物化学性质及香蕉幼苗生长的影响. 植物营养与肥料学报, 2023, 29(5): 980-990 [9] 张路, 吴军虎, 杨晓伟, 等. 施加黄腐酸钾对黑垆土土壤结构的影响. 灌溉排水学报, 2022, 41(10): 131-138 [10] 刘艳, 唐亚福, 杨越超, 等. 大颗粒活化腐植酸肥对苹果土壤团聚体和有机碳的影响. 应用生态学报, 2022, 33(4): 1021-1026 [11] Islam MA, Morton DW, Johnsin BB, et al. Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems and their effect on the adsorption of other species: A review. Separation and Purification Technology, 2020, 247: 116949 [12] Zohaib M, Ashraf K, Fatima K, et al. Humic acid and selenium supplementation modulate the growth and antioxidant potential of chili under cadmium stress. Agronomy, 2023, 13: 2554 [13] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000 [14] Six J, Elliott ET, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62: 1367-1377 [15] Karlen DL, Mausbach MJ, Doran JW, et al. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 1997, 61: 4-10 [16] 郭伟, 李丹丹, 徐基胜, 等. 秸秆与有机无机肥配施对不同质地潮土土壤质量和小麦产量的影响. 土壤学报, 2024, 61(5): 1360-1373 [17] 韩潇杰, 任志杰, 李双静, 等. 不同施氮量对土壤团聚体碳氮含量及小麦产量的影响. 中国农业科学, 2024, 57(9): 1766-1778 [18] Yazdanpanah N, Mahmoodabadi M, Cerdà A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma, 2016, 266: 58-65 [19] Su YZ, Yang R, Liu WJ, et al. Evolution of soil structure and fertility after conversion of native sandy desert soil to irrigated cropland in arid region, China. Soil Science, 2010, 175: 246-254 [20] Zhou L, Monreal CM, Xu ST, et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma, 2019, 338: 269-280 [21] Pirmoradian N, Sepaskhah AR, Hajabbasi MA. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments. Biosystems Engineering, 2005, 90: 227-234 [22] Wang X, Cammeraat ELH, Cerli C, et al. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biology & Biochemistry, 2014, 72: 55-65 [23] 周孟椋, 高焕平, 刘世亮, 等. 秸秆与氮肥配施对潮土微生物活性及团聚体分布的影响. 水土保持学报, 2022, 36(1): 340-345 [24] Zhou GY, Xu S, Philippe C, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Review, 2019, 6: 746-757 [25] 陈曦, 刘宝勇, 于皓, 等. 腐植酸钾协同微生物菌剂对矿区废弃地土壤改良的影响. 土壤, 2024, 56(4): 833-840 [26] Zhang HQ, Qin Y, Li ZZ, et al. Mixed application of biochar, maize straw, and nitrogen can improve organic carbon fractions and available nutrients of a sandy soil. Arid Land Research and Management, 2022, 37: 115-133 [27] Hailegnaw NS, Filip P, Katerina S. et al. High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma, 2019, 338: 48-55 [28] Guo YQ, Ma ZT, Ren BZ, et al. Effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency and greenhouse gas emission. Agriculture, 2022, 12: 448 [29] 冯俊义, 赵萌萌, 谭菁, 等. 四种环境材料单施对煤矿区土壤结构和性状的影响研究. 农业资源与环境学报, 2024, 41(1): 72-82 [30] Feitosa ALPM, Siqueira GM, Moura EG, et al. Effect of different soil fertilization regimes on soil chemical properties and maize grains yield in humid tropic. Research, Society and Development, 2022, 11:e4511527635 [31] 王琪, 武辰冉, 张玉兰, 等. 磷素调节剂对土壤磷素有效性和玉米产量的影响. 生态学杂志, 2025, 44(6): 1963-1970 [32] 叶子壮, 王松燕, 陆潇, 等. 秸秆还田、覆膜和施氮对旱地麦田土壤质量的影响. 环境科学, 2024, 45(4): 2292-2303 [33] 袁天佑, 冀建华, 王俊忠, 等. 腐植酸与氮肥配施对冬小麦氮素吸收利用及产量的影响. 中国生态农业学报, 2017, 25(3): 365-372 [34] 裴瑞杰, 袁天佑, 王俊忠, 等. 施用腐殖酸对夏玉米产量和氮效率的影响. 中国农业科学, 2017, 50(11): 2189-2198 [35] 张宝冲, 任志杰, 田艳艳, 等. 我国小麦和玉米施用腐植酸效果的整合分析. 植物营养与肥料学报, 2024, 30(12): 2318-2330 [36] 于晟玥, 牛银星, 王泽平, 等. 黄腐酸添加量对低氮胁迫下小麦生长和根系形态的影响. 植物营养与肥料学报, 2023, 29(2): 323-333 [37] Galambos N, Compant S, Moretto M, et al. Humic acid enhances the growth of tomato promoted by endophytic bacterial strains through the activation of hormone-, growth-, and transcription-related processes. Frontiers in Plant Science, 2020, 11: 582267 [38] 李长青, 纪萌, 马萌萌, 等. 天然增效剂与化学抑制剂复配对小麦/玉米轮作体系产量、氮素利用及氮平衡的影响. 应用生态学报, 2023, 34(9): 2391-2397 [39] Pang LY, Song FP, Song XL, et al. Effects of different types of humic acid isolated from coal on soil NH3 volatilization and CO2 emissions. Environmental Research, 2021, 194: 110711 [40] Gao F, Li ZL, Du YP, et al. The combined application of urea and fulvic acid solution improved maize carbon and nitrogen metabolism. Agronomy, 2022, 12: 1400 |