[1] 康绍忠. 藏粮于水 藏水于技:发展高水效农业 保障国家食物安全. 中国水利, 2022(13): 1-5 [2] 许迪, 李益农, 龚时宏, 等. 气候变化对农业水管理的影响及应对策略研究. 农业工程学报, 2019, 35(14): 79-89 [3] Nam WH, Hong AM, Choi JY. Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea? Agricultural Water Management, 2015, 150: 129-138 [4] 郭雯雯, 黄生志, 赵静, 等. 渭河流域潜在蒸散发时空演变与驱动力量化分析. 农业工程学报, 2021, 37(3): 81-89 [5] 刘勤, 严昌荣, 何文清. 黄河流域干旱时空变化特征及其气候要素敏感性分析. 中国农业气象, 2016, 37(6): 623-632 [6] Lu JY, Cai HJ, Jiang TT, et al. Assessment of global drought propensity and its impacts on agricultural water use in future climate scenarios. Agricultural and Forest Meteorology, 2019, 278: 107623 [7] 康丽娟, 巴特尔·巴克, 罗那那, 等. 阿勒泰地区不同时间尺度参考作物蒸散量的时空变化及影响. 中国农业气象, 2018, 39(8): 502-511 [8] Du Y, Zhao J, Huang Q. Quantitative driving analysis of climate on potential evapotranspiration in Loess Plateau incorporating synergistic effects. Ecological Indicators, 2022, 141: 109076 [9] Macek U, Bezak N, Sraj M. Reference evapotranspiration changes in Slovenia, Europe. Agricultural and Forest Meteorology, 2018, 260: 183-192 [10] Tang B, Tong L, Kang SZ, et al. Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe River basin of North China. Agricultural Water Management, 2011, 98: 1660-1670 [11] 毕彦杰, 赵晶, 赵勇, 等. 京津冀地区潜在蒸散量时空演变特征及归因分析. 农业工程学报, 2020, 36(5): 130-140 [12] 段娅楠, 季漩, 郭若愚, 等. 雅鲁藏布江流域潜在蒸散发的气候敏感性及其变化的主导因子分析. 水土保持研究, 2020, 27(2): 261-268 [13] 朱光磊, 佟守正, 赵春子. 嫩江流域参考作物蒸散量时空变化及其气候归因. 应用生态学报, 2022, 33(1): 201-209 [14] Guo DX, Olesen JE, Manevski K, et al. Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios. Agricultural Water Management, 2021, 245: 106575 [15] 康绍忠, 杜太生, 孙景生, 等. 基于生命需水信息的作物高效节水调控理论与技术. 水利学报, 2007, 38(6): 7 [16] 孙爽, 杨晓光, 李克南, 等. 中国冬小麦需水量时空特征分析. 农业工程学报, 2013, 29(15): 72-82 [17] 车森, 杨辉, 葛磊, 等. 一种面向在线地图叠加的GIS数据几何校正方法. 测绘科学技术学报, 2020, 37(4): 421-424 [18] 王景雷, 康绍忠, 孙景生, 等. 基于贝叶斯最大熵和多源数据的作物需水量空间预测. 农业工程学报, 2017, 33(9): 99-106 [19] 郭梦瑶, 佘敦先, 张利平, 等. 渭河流域潜在蒸散量变化的气候归因. 资源科学, 2020, 42(5): 907-919 [20] Guo DX, Olesen JE, Pullens JWM, et al, Calibrating AquaCrop model using genetic algorithm with multi-objective functions applying different weight factors. Agronomy Journal, 2021, 113: 1420-1438 [21] Yang JX, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth System Science Data, 2021, 13: 3907-3925 [22] Zeng, P, Sun F, Liu Y, et al. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-Kmeans approach. Weather and Climate Extremes, 2021, 31: 100304 [23] Allen RG. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper. Rome: FAO, 1998 [24] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述. 气候变化研究进展, 2019, 15(5): 519-525 [25] 蒋文好, 陈活泼. CMIP6模式对亚洲中高纬区极端温度变化的模拟及预估. 大气科学学报, 2021, 44(4): 592-603 [26] 康银红, 王嘉驰, 宋鑫, 等. 四川省不同SPEI指数计算方法适用性评价. 农业机械学报, 2023, 54(6): 340-349 [27] Mccuen RH. A sensitivity and error analysis of procedures used for estimating evaporation. Journal of the American Water Resources Association, 1974, 10: 486-497 [28] Maraun D. Bias correcting climate change simulations: A critical review. Current Climate Change Reports, 2016, 2: 211-220 [29] Zhang B, Soden BJ. Constraining climate model projections of regional precipitation change. Geophysical Research Letters, 2019, 46: 10522-10531 [30] Fan ZX, Thomas A. Decadal changes of reference crop evapotranspiration attribution: Spatial and temporal variability over China 1960-2011. Journal of Hydrology, 2018, 560: 461-470 [31] Huang ZW, Yang HB, Yang DW. Dominant climatic factors driving annual runoff changes at the catchment scale across China. Hydrology and Earth System Sciences, 2016, 20: 2573-2587 [32] Yuan WP, Zheng Y, Piao SL, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5: 8 [33] 袁瑞瑞, 黄萧霖, 郝璐. 近40年中国饱和水汽压差时空变化及影响因素分析. 气候与环境研究, 2021, 26(4): 413-424 [34] O’Neill BC, Tebaldi C, Van VDP, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9: 3461-3482 [35] Ning T, Li Z, Liu W. Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrology and Earth System Sciences, 2017, 21: 1515-1526 [36] Yao N, Li L, Feng P, et al. Projections of drought characteristics in China based on a standardized precipitation and evapotranspiration index and multiple GCMs. Science of the Total Environment, 2019, 704: 135245 [37] Zarch MAA, Sivakumar B, Sharma A. Assessment of global aridity change. Journal of Hydrology, 2015, 520: 300-313 [38] 张富仓, 高月, 焦婉如, 等. 水肥供应对榆林沙土马铃薯生长和水肥利用效率的影响. 农业机械学报, 2017, 48(3): 270-278 [39] Rashid MA, Andersen MN, Wollenweber B, et al. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agricultural and Forest Meteorology, 2018, 248: 119-129 [40] Li SJ, Wang GJ, Sun SL, et al. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980-2010. Journal of Hydrology, 2021, 595: 126037 |