[1] Netherway T, Bengtsson J, Krab EJ, et al. Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 2021, 50: 25-42 [2] 姜圆圆, 郑毅, 汤利, 等. 豆科禾本科作物间作的根际生物过程研究进展. 农业资源与环境学报, 2016, 33(5): 407-415 [3] Zelles L, Bai QY, Beck T, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricul-tural soil. Soil Biology and Biochemistry, 1992, 24: 317-323 [4] 吕付泽, 杨雅丽, 鲍雪莲, 等. 免耕不同秸秆覆盖量对黑土微生物群落及其残留物的影响. 应用生态学报, 2023, 34(4): 903-912 [5] 马进鹏, 庞丹波, 陈林, 等. 贺兰山东坡不同海拔典型植被带土壤微生物磷酸脂肪酸分析. 生态学报, 2022, 42(12): 5045-5058 [6] 谷慧芳. 不同土地利用方式下红壤PLFA指纹的差异及其影响因素. 硕士论文. 北京: 中国农业科学院, 2021 [7] 高传俊, 杨晨曦, 高欣, 等. 种植模式对科尔沁沙地土壤微生物群落的影响. 干旱区资源与环境, 2023, 37(4): 162-169 [8] Shi P, Li P, Li ZB, et al. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agricultural Water Management, 2022, 259: 107231 [9] Morriën E, Hannula SE, Snoek LB, et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8: 14349 [10] 帅林林, 周青平, 陈有军, 等. 高寒半湿润沙地草本修复期土壤微生物变化研究. 草业学报, 2019, 28(9): 11-22 [11] 郝颢晶, 关潇, 曹明, 等. 呼伦贝尔沙化草地不同生态修复阶段植物群落特征研究. 环境工程技术学报, 2023, 13(4): 1573-1585 [12] 李泰君. 沙地生态系统生态恢复评价. 硕士论文. 呼和浩特: 内蒙古大学, 2010 [13] 杨皓钦, 王海兵, 左合君, 等. 毛乌素沙地绿洲化土地变化模式及稳定. 应用生态学报, 2024, 35(3): 687-694 [14] 马建业, 佟小刚, 李占斌, 等. 毛乌素沙地沙漠化逆转过程土壤颗粒固碳效应. 应用生态学报, 2016, 27(11): 3487-3494 [15] Glasener KM, Wagger MG, MacKown CT, et al. Contributions of shoot and root N15 labeled legume nitrogen sources to a sequence of three cereal crops. Soil Science Society of America Journal, 2002, 66: 523-530 [16] 梁彦涛, 徐太海, 金连丰, 等. 豆科植物在生态恢复方面的应用研究进展. 安徽农业科学, 2014, 42(20): 6637-6638 [17] 李林山, 王梓瑜, 白慧慧, 等. 毛乌素沙地4种不同植物根际土壤细菌群落结构和多样性特征. 干旱区资源与环境, 2024, 38(2): 142-149 [18] 田静, 步连燕, 陈文峰, 等. 毛乌素沙地人工林恢复对土壤剖面化学性质和细菌群落的影响. 土壤学报, 2023, 60(3): 881-892 [19] 赵朋波, 邱开阳, 谢应忠, 等. 毛乌素沙地南缘不同固沙灌木下土壤养分的空间异质性. 草地学报, 2021, 29(9): 2040-2048 [20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 10-29 [21] Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 1996, 22: 59-65 [22] 庞丹波, 吴梦瑶, 赵娅茹, 等. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素. 应用生态学报, 2023, 34(7): 1957-1967 [23] 鞠灵, 许昊, 金学娟, 等. 基于立地因子及其交互作用的柠条生物量模型研究. 西北林学院学报, 2023, 38(2): 1-7 [24] Su BQ, Shangguan ZP. Response of water use efficiency and plant-soil C:N:P stoichiometry to stand quality in Robinia pseudoacacia on the Loess Plateau of China. Catena, 2021, 206: 105571 [25] 于双, 李小伟, 王瑞霞, 等. 灵武白芨滩不同年限柠条固沙林林下草本群落演替规律及机制. 草业学报, 2024, 33(3): 13-23 [26] 詹瑾, 韩丹, 杨红玲, 等. 科尔沁沙地植被恢复过程中群落组成及多样性演变特征. 中国沙漠, 2022, 42(2): 194-206 [27] 姚金冬. 不同年龄小叶锦鸡儿群落土壤微生物多样性研究. 硕士论文. 沈阳: 东北大学, 2010 [28] 高传俊, 杨晨曦, 高欣, 等. 种植模式对科尔沁沙地土壤微生物群落的影响. 干旱区资源与环境, 2023, 37(4): 162-169 [29] 吴凡, 李传荣, 崔萍, 等. 不同肥力条件下的桑树根际微生物种群分析. 生态学报, 2008, 28(6): 2674-2681 [30] Grayston SJ, Griffith GS, Mawdsley JL, et al. Accoun-ting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology and Biochemistry, 2001, 33: 533-551 [31] 唐政, 李继光, 李慧, 等. 喀斯特生态恢复过程中土壤原生动物的指示作用研究. 生态环境学报, 2015, 24(11): 1808-1813 [32] Bragazza L, Bardgett RD, Mitchell EAD, et al. Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytologist, 2015, 205: 1175-1182 [33] Wu HW, Cui HL, Fu CX, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Science of the Total Environment, 2024, 909: 168627 [34] 苟小林, 周青平, 涂卫国, 等. 高寒半湿润沙地植物与土壤微生物多样性对植被恢复的响应. 生态学报, 2023, 43(20): 8442-8453 [35] Daniel HC, Alexia S, Guillermo AA, et al. Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil Biology and Biochemistry, 2022, 165: 108485 [36] 王雅芸, 隆彦昕, 李岩, 等. 胡杨土壤理化性质与微生物群落结构空间和分布的关系. 生态学报, 2021, 41(14): 5669-5684 [37] Zhang RF, Vivanco JM, Shen QR. The unseen rhizosphere root-soil-microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37: 8-14 [38] Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10: 4841 [39] 朱义族, 李雅颖, 韩继刚, 等. 水分条件变化对土壤微生物的影响及其响应机制研究进展, 2019, 30(12): 4323-4332 [40] 郭蓉, 吴旭东, 王占军, 等. 荒漠草原土壤细菌和真菌群落对降水变化的响应. 应用生态学报, 2023, 34(6): 1500-1508 [41] Srivastava SC. Microbial C, N and P in dry tropical soils: Seasonal changes and influence of soil moisture. Soil Biology and Biochemistry, 1992, 24: 711 [42] 王明涛, 赵玉红, 苗彦军, 等. 藏北一年生人工草地弃耕不同年限的土壤微生物群落特征研究. 中国草地学报, 2023, 45(7): 100-109 [43] 姚兰, 张焕朝, 胡立煌, 等. 黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系. 浙江农林大学学报, 2019, 36(6): 1069-1076 [44] Liu PW, Ding SY, Liu N, et al. Soil microbial community in relation to soil organic carbon and labile soil organic carbon fractions under detritus treatments in a subtropical Karst region during the rainy and dry seasons. Forests, 2023, 14: 2291 |