[1] 于晓晶, 张丽霞, 周天军, 等 . 干旱事件对全球干旱区生态系统胁迫作用的长期变化. 中国科学: 地球科学, 2023, 53(1): 151-166 [2] Su B, Huang J, Fischer T, et al. Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 10600-10605 [3] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021 [4] Sun Y. Impact of human activities on climate system: An interpretation of Chapter Ⅲ of WGⅠ report of IPCC AR6. Transactions of Atmospheric Sciences, 2021, 44: 654-657 [5] Zhang Q, Kong DD, Vijay PS, et al. Response of vegetation to different time-scales drought across China: Spatiotemporal patterns, causes and implications. Global and Planetary Change, 2017, 152: 1-11 [6] Wang R, John AG, Craig AE, et al. Detecting intra- and inter-annual variability in gross primary productivity of a North American grassland using MODIS MAIAC data. Agricultural and Forest Meteorology, 2020, 281: 107859 [7] 蓝浩宸, 刘琰琰, 张玉芳, 等. 基于标准化降水蒸散指数的川西高原干旱时空变化. 应用生态学报, 2023, 34(6): 1533-1540 [8] Ramirez SG, Hales RC, Williams GP, et al. Extending SC-PDSI-PM with neural network regression using GLDAS data and Permutation feature importance. Environmental Modelling & Software, 2022, 157: 105475 [9] Zhu ZY, Duan WL, Zou S, et al. Spatiotemporal cha-racteristics of meteorological drought events in 34 major global river basins during 1901-2021. Science of the Total Environment, 2024, 921: 170913 [10] Deng Y, Wang XH, Wang K, et al. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agricultural and Forest Meteorology, 2021, 298-299: 108307 [11] 周温存, 刘正佳, 王坤, 等. 北方农牧交错区干旱特征变化及其对植被总初级生产力的影响. 地球信息科学学报, 2023, 25(2): 421-437 [12] Samantaray AK, Ramadas M, Panda RK. Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble. Agricul-tural Water Management, 2022, 226: 107568 [13] 李尚飞, 戈文艳, 王飞. 1982—2019年中国北方干旱事件特征及其对植被的影响. 水土保持研究, 2023, 30(3): 251-259 [14] 张筱渲, 王蕊, 单凤君, 等. 1961—2020 年东北三省干旱时空分布特征. 灌溉排水学报, 2024, 43(1): 78-88 [15] Liu HH, Liu Y, Chen Y, et al. Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agricultural and Forest Meteorology, 2023, 331: 109327 [16] 赵家培, 郭恩亮, 王永芳, 等. 基于核温度植被干旱指数的内蒙古植被生长季生态干旱监测. 应用生态学报, 2023, 34(11): 2929-2937 [17] Yang J, Tian HQ, Pan SF, et al. Amazon drought and forest response: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016. Global Change Biology, 2018, 24: 1919-1934 [18] Li XY, Li Y, Chen AP, et al. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agricultural and Forest Meteorology, 2019, 269-270: 239-248 [19] Piao SL, Wang XH, Wang K, et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 2020, 26: 300-318 [20] 张世喆, 朱秀芳, 刘婷婷, 等. 气候变化下中国不同植被区总初级生产力对干旱的响应. 生态学报, 2022, 42(8): 3429-3440 [21] 张更喜, 粟晓玲, 郝丽娜, 等. 基于NDVI和scPDSI研究1982—2015年中国植被对干旱的响应. 农业工程学报, 2019, 35(20): 145-151 [22] Wei XN, He W, Zhou YL, et al. Global assessment of lagged and cumulative effects of drought on grassland gross primary production. Ecological Indicators, 2022, 136: 108646 [23] Li CJ, Fu BJ, Wang S, et al. Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2021, 2: 858-873 [24] Bi WJ, He W, Zhou YL, et al. A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020. Scientific Data, 2022, 9: 213 [25] Li MY, Cao S, Zhu ZC, et al. Spatiotemporally consis-tent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022. Earth System Science Data, 2023, 15: 4181-4203 [26] Deng Y, Wang XH, Lu TP, et al. Divergent seasonal responses of carbon fluxes to extreme droughts over China. Agricultural and Forest Meteorology, 2023, 328: 109253 [27] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 2021, 13: 3907-3925 [28] Kendall DMGJ. Rank correlation methods. British Journal of Psychology, 1990, 25: 86-91 [29] Schenk HJ, Jackson RB. The global biogeography of roots. Ecological Monographs, 2002, 72: 311-328 [30] Chen YZ, Feng XM, Tian HQ, et al. Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Global Change Biology, 2021, 27: 5848-5864 [31] 刘莹, 朱秀芳, 徐昆, 等. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析. 遥感技术与应用, 2021, 36(2): 381-390 [32] 王军邦, 杨屹涵, 左婵, 等. 气候变化和人类活动对中国陆地生态系统总初级生产力的影响厘定研究. 生态学报, 2021, 41(18): 7085-7099 [33] Gang CC, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Science of the Total Environment, 2018, 645: 827-836 [34] 邵全琴, 刘树超, 宁佳, 等. 2000—2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153 [35] Robert H, Joan D, Frances CM. Drought sensitivity in mesic forests heightens their vulnerability to climate change. Science, 2023, 382: 1171-1177 [36] Lian X, Piao SL, Chen A, et al. Multifaceted characte-ristics of dryland aridity changes in a warming world. Nature Reviews Earth Environment, 2021, 2: 232-250 [37] Yuan WP, Zheng Y, Piao SL, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5: eaax1396 [38] He B, Chen H, Lin SR, et al. Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. National Science Review, 2022, 9: nwab150 [39] Novick KA, Ficklin DL, Stoy PC, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6: 1023-1027 [40] Zhang Y, Fang JN, William KS, et al. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest US drought. Global Change Biology, 2023, 29: 3395-3408 [41] Herring SC, Hoerling MP, Kossin JP, et al. Explaining extreme events of 2014 from a climate perspective. Bulletin of American Meteorological Society, 2015, 96: S1-S172 [42] Sun Y, Fu R, Dickinson R, et al. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. Journal of Geophysical Research: Biogeosciences, 2015, 120: 2427-2440 [43] D’Orangeville L, Maxwell J, Kneeshaw D, et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Global Change Biology, 2018, 24: 2339-2351 [44] 吉珍霞, 侯青青, 裴婷婷, 等. 黄土高原植被物候对季节性干旱的敏感性响应. 干旱区地理, 2022, 45(2): 557-565 [45] Zhang L, Xiao JF, Zhou Y, et al. Drought events and their effects on vegetation productivity in China. Ecosphere, 2016, 7: e01591 [46] Song LS, Li Y, Ren YH, et al. Divergent vegetation responses to extreme spring and summer droughts in Southwestern China. Agricultural and Forest Meteorology, 2019, 279: 107703 [47] Zhang M, Yuan X, Otkin JA. Remote sensing of the impact of flash drought events on terrestrial carbon dyna-mics over China. Carbon Balance and Management, 2022, 15: 20 |