欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (12): 3729-3738.doi: 10.13287/j.1001-9332.202512.003

• 研究论文 • 上一篇    下一篇

基于似乎不相关回归的帽儿山阔叶混交林6种林下幼苗幼树生物量模型构建

陈雅丽, 苗铮, 郝元朔, 董利虎*   

  1. 东北林业大学林学院, 森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040
  • 收稿日期:2025-09-15 修回日期:2025-10-16 出版日期:2025-12-18 发布日期:2026-07-18
  • 通讯作者: *E-mail: lihudong@nefu.edu.cn
  • 作者简介:陈雅丽, 女, 2001年生, 硕士研究生。主要从事林分生长模型研究。E-mail: 2570937828@qq.com
  • 基金资助:
    “十四五”国家重点研发计划项目(2022YFD2201001)和黑龙江省自然科学基金项目(优秀青年项目)(YQ2022C005)

Development of biomass models for six understory seedling and sapling species in broad-leaved mixed forests of Maoershan Mountain, Northeast China utilizing seemingly unrelated regression

CHEN Yali, MIAO Zheng, HAO Yuanshuo, DONG Lihu*   

  1. Ministry of Education Key Laboratory of Sustainable Forest Ecosystem Management, School of Forestry, Northeast Forestry University, Harbin 150040, China
  • Received:2025-09-15 Revised:2025-10-16 Online:2025-12-18 Published:2026-07-18

摘要: 幼苗幼树作为林下植被重要的组成部分,其生物量的准确估算对森林生态系统碳储量的量化评估具有重要科学意义。本研究基于帽儿山101块阔叶混交林样地林下色木槭、山杨、裂叶榆、水曲柳、蒙古栎和暴马丁香6种幼苗幼树的620株实测数据,以基径、株高、冠面积为自变量,构建幂函数生物量模型,并筛选出最优模型作为基础模型。在此基础上,采用似然分析法评估基础模型的误差结构,进而利用似乎不相关回归(SUR)方法建立6种幼苗幼树的生物量方程组,并采用“刀切法”对模型进行检验。结果表明: 在6种幼苗幼树中,除水曲柳以基径为自变量的一元生物量模型,暴马丁香以基径、株高和冠面积为自变量的三元生物量模型为最优外,其余幼苗幼树均以基径和株高为自变量组成的二元生物量预测模型效果最佳,调整后的决定系数(Ra2)介于0.716~0.990,均方根误差(RMSE)介于0.060~6.403,且各模型参数均显著。各树种不同组分及总生物量的误差结构均表现为相乘性(ΔAICc>2),采用对数转换后的线性生物量模型分别构建6种幼苗幼树的SUR生物量模型,各模型均具有较高的Ra2(0.713~0.987)和较低的RMSE(0.062~7.408),可对林下幼苗幼树生物量进行准确估算。

关键词: 幼苗幼树, 误差结构, 似乎不相关回归, 生物量

Abstract: Seedlings and saplings are vital elements of understory vegetation, the accurate biomass estimation of which is important for quantifying carbon storage within forest ecosystems. With data of 620 seedlings and saplings individuals from six species-Acer mono, Populus davidiana, Ulmus laciniata, Fraxinus mandschurica, Quercus mongolica, and Syringa amurensis-across 101 broadleaf mixed forest plots in Maoershan Mountain, we developed power-function biomass models utilizing basal diameter, plant height, and crown area as independent variables and identify the optimal models as the base models. We further assessed the error structure of each base model through likelihood analysis, and established a biomass equation system for the six species using seemingly unrelated regression (SUR). The results showed that the univariate model utilizing only basal diameter was the most effective for F. mandschurica. For S. amurensis, the ternary model that encompassed basal diameter, plant height, and crown area was superior. For the other species, the binary biomass models that included basal diameter and plant height yielded the best results. The adjusted coefficients of determination (Ra2) varied from 0.716 to 0.990, while the root mean square errors (RMSE) ranged from 0.060 to 6.403, with all model parameters showing significance. The error structure for both component and total biomass across the species was found to be multiplicative (ΔAICc>2). Consequently, linear biomass models following logarithmic transformation were employed to develop the SUR biomass models for the six species. These models had high Ra2 values (0.713-0.987) and low RMSE values (0.062-7.408), suggesting they were appropriate for accurately estimating the biomass of seedlings and saplings in the understory.

Key words: seedling and sapling, error structure, seemingly unrelated regression, biomass