应用生态学报 ›› 2003, Vol. ›› Issue (12): 2321-2325.
李杨1,2, 黄国宏1, 史奕1
收稿日期:
2003-05-08
修回日期:
2003-06-27
通讯作者:
李杨,女,1978年生,硕士生,主要从事大气CO2浓度升高对农田土壤微生物及其与植物互作影响的研究,发表论文1篇.E-mail:yanglil978@yahoo.com.cn.
基金资助:
LI Yang1,2, HUANG Guohong1, SHI Yi1
Received:
2003-05-08
Revised:
2003-06-27
摘要: 综述了大气CO2浓度升高条件下,农田土壤微生物区系、土壤呼吸、土壤微生物生物量;植物微生物共生体——内生菌根、根瘤及其与农田土壤微生物活动相关因素发生的变化.该方面的研究虽然受实验条件限制,在国内外开展研究的持续时间较短,但现有的研究表明,大气CO2浓度升高主要通过影响植物生长而间接影响农田土壤微生物活性.
中图分类号:
李杨, 黄国宏, 史奕. 大气CO2浓度升高对农田土壤微生物及其相关因素的影响[J]. 应用生态学报, 2003, (12): 2321-2325.
LI Yang, HUANG Guohong, SHI Yi. Effect of atmospheric CO2 enrichment on soil microbes and related factors[J]. Chinese Journal of Applied Ecology, 2003, (12): 2321-2325.
[1] Ball AS, Milne E, Drake BG, et al. 2000. Elevated atmosphericcarbon dioxide concentration increases soil respiration in a mid-suecessional lowland forest. Soil Biol Biochem, 32:721~723 [2] Berntsun GM, Bazzaz FA. 1997. Elevated CO2 and the magnitude and seasonal dynamics of root production and loss in Betula papyrifera . Plant Soil, 190:211~216 [3] Callaway RM. 1994. Compensatory response of CO2 exchange and biomass allocation and their effects on the relative growth rates of ponderosa pine in different CO2 and temperature regimes. Oecologia, 98:159~166 [4] Conteaux, MM. 1991. Increased atmospheric CO2 and litter quality:Decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos, 61: 54~64 [5] Daepp M, Suter D, Almeida JPF, et al. 2000. Yield response of Lolium perenne swards to free-air CO2 enrichment increased over six years in a high N input system on fertile soil. GlobalChange Biol,6:805~816 [6] Dai K-J(戴开军),Dong Y-Q(董彦卿),Gong H-W(龚宏伟).2002.VA Glomus mosseae effect on growth of winter wheat sprout.J Xi'an Unit Univ(西安联合大学学报),5(2):34~36(in Chinese) [7] Darrah PR. 1996. Rhizodeposition under ambient CO2 and elevated levels. Plant Soil, 187: 265~275 [8] Ding L(丁莉),Bai K-Z(白克智),Zhang C-H(张崇浩).1997.Effects of elevated atmospheric carbon dioxide (CO2) on the activities of nodule and mycorrhiza.J HubeiInst For Nati(湖北民族学院学报),15(3):6~9(in Chinese) [9] Ding L(丁莉),Bai K-Z(白克智).1998.Influences of doubled CO2 in the atmospheric on some physiological characteristics of plant species.J Hubei Inst ForNati(湖北民族学院学报),16(6):1~4 (in Chinese) [10] Goriasen A. 1996. Elevated CO2 evokes quantitative and qualitative changes in carbon dynamics in a plant/soil system: Mechanism and implications. Plant Soil, 197:289~298 [11] Guo J-P(郭建平),Gao S-H(高素华),Bai Y-M(白月明),et al.1996.An experiment study of theimpacts CO2 concentration doubhg on soybean growth.Sci Atmo Sin(大气科学),20(2):243~249(in Chinese) [12] Guo X-Z(郭秀珍),Bi G-C(毕国昌).1989.Plant Mycorrhiza and Its Application Technology. Beijing: China Forestry Press. 80~131(in Chinese) [13] Hardy RWF, Havelka UD. 1976. Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybean. In: Nutman PS ed. Symbiotic Nitrogen Fixation. Cambridge: Cambridge University Press. 421~439 [14] Herning FP. 1996. Composition and decomposition of soybean and sorghun tissues grown under elevated atmospheric carbon dioxide. J Environ Qual, 25: 822~827 [15] Hodge A. 1996. Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biol Fertil Soil, 23 : 388~398 [16] Hu S, Chapin Ⅲ FS, Firestone MK, et al. 2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2.Nature, 409:188~191 [17] Hu SJ, Firestone MK, Chapin Ⅲ FS. 1999. Soil microbial feedbacks to atmospheric CO2 enrichment. Tree, 14(11): 433~437 [18] Inubushi K, Hoque MM, Miura S, et al. 2001. Effects of free-air CO2 enrichment (FACE) on microbial biomass in paddy field soil.Soil Sci Plant Nutr , 47(4) : 737~745 [19] Kampichler C, Kandeler E, Bardgett RD, et al. 1998. Impact of elevated atmospheric CO2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Global Change Biol, 4: 335~346 [20] Kimball BA, Morris CF, Pinter Jr. PJ, et al. 2001. Wheat grain quality as affected by elevated CO2, drought, and soil nitrogen. New Phytol, 150: 295~303 [21] Lamber H. 1987. Growth, respiration, exudation and symbiotic associations: The fate of carbon translocated to the roots. In: Gregory PJ, eds. Root Development and Function. Cambridge: Cambridge University Press. 125~146 [22] Lamber H. 1993. Rising CO2, secondary plant metabolism, plantherbivore interactions and litter decomposition: Theoretical consideration. Vegetatio, 104~105: 263~271 [23] Lamborg MR. 1983. Microbial effects. In: Lemon ER, eds. The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide.Colorado: Westview Press. 131~176 [24] Li F-S(李伏生),Kang S-Z(康绍忠).2002.Effects ofCo2 enrichment,nitroger.and soil moisture on plant C/N and C/P in spring wheat.Acta Phytoecol Sin(植物生态学报),26(3):295~302(in Chinese) [25] Li F-S(李伏生),Kang S-Z(康绍忠),Zhang F-C(张富仓),et al.2002.Effect of atmospheric CO2 andtemperatureincrement on crop physiology and ecology.Chin J Appl Ecol(应用生态学报),13(9):1169~1173(in Chinese) [26] Li Z-Y(李泽禹).1998.Nodule and mycorrhiza.Chin J Biol Sci(生物学通报),33(1):11~12(in Chinese) [27] Liang W-Q(梁文举),Li Q(李琪),Chen L-J(陈立杰), et al.2002. Effect of elevated atmospheric CO2 on nematode trophic groups in Chinese paddy-field ecosystem. Chin J Atp tl Ecol (应用生态学报),13(10):1269~1272(in Chinese) [28] Liang W-Q(梁文举),Liu Q-H(刘权海).1999.Role of soil fauna in nutrient cycling of agroecosystems.In:Liu Z-X(刘作新),eds.Soil Science Approaching the 21st Century. Shenyang: Liaoning Science and Technology Press. 285~288(in Chinese) [29] LinW-H(林伟宏),Zhang F-S(张福锁),BaiK-Z(白克智),et al.1999.Effect of elevated atmospheric CO2on micro-ecosystem in rhizosphere of plant.Chin Sci Bull(科学通报),44(16):1690~1696(in Chinese) [30] Niklaus PA, Komer C. 1996. Responses of soil microbiota of a late successional alpine grassland to longterm CO2 enrichment. Plant Soil, 184:219~229 [31] Norby RJ. 1994. Issues and perspectives for investigating root responses to elevated atmosphericcarbon dioxide. Plant Soil, 165:9~20 [32] O' Nell EG, Norby RJ. 1991. First-year decomposition dynamics of yellow poplar leaves produced under GO2 enrichment. Bull Ecol Soc Am, 1:175~181 [33] O'Nell EG. 1994. Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil, 165: 55~65 [34] Philips RL, Zak DR, Holmes WE, et al. 2002. Microbial community composition and function beneath temperate trees exposed to eleva ted atmospheric carbon dioxide and ozone Oecologia, 131:236~244 [35] Rice CW, Garcia FO, Hamptoh CO, et al. 1994. Soil microbial response in tallgrass prairie to elevated CO2. Plant Soil, 165:67~74 [36] Ronn R, Gavito M, Larsen J, et al. 2002. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem, 34: 923~932 [37] Runion GB, Curl EA, Rogers HH, et al. 1994. Effects of CO2 enrichment on microbial population in the rhizosphere and phyllosphere of cotton. Agric For Meteorol, 70: 117~130 [38] Ryle GJA. 1992. Growth of white clover, dependent on N2 fixation in elevated CO2 and tenperature. Ann Bot, 70:221~228 [39] Schortemeyer M, Hartwig UA, Hendrey GR, et al. 1996. Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE).Soil Biol Biochem, 28(12): 1717~1724 [40] Seegmuller S, Schulte M, Herschbcch C, et al. 1996. Interactive effects of mycorrhization and elevated atmospheric CO2 on sulfur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ, 19:418~426 [41] Sinclair TR, Pinter Jr. PJ, Kimball BA, et al. 2000. Leaf nitrogen concentration of wheat subjected to elevated CO2 and either water or nitrogen deficits. Agric Ecosyst Environ, 79: 53~60 [42] Soussana JF, Casella E, Loiseau P. 1996. Long-term effect of CO2 enrichment and temperature increase on a temperature grass sward 2. Plant nitrogen budgets and root fraction. Plant Soil, 182:101~114 [43] Soussana JF, Hartwig UA. 1996. The effects of elevated CO2 on symbiotic N2 fixation: A link between the carbon and nitrogen in grassland ecosystem. Plant Soil, 187: 321~332 [44] Sowerby A, Blum H, Gray TRG, et al. 2000. The decomposition of Lolium perenne in soils exposed to elevated CO2: Comparisons of nass loss of litter with soil respiration and soil microbial biomass.Soil Biol Biochem , 32:1359~1366 [45] Treonis AM, Lussenhop JF. 1997. Rapid response of soil protozoa to elevated CO2. Biol Ferti Soil, 25:60~62 [46] van Ginkel JH, Gorissen A, van Veen JA. 1996. Long-term decomposition of grass roots as affected by elevated atmospheric carbon dioxide. J Environ Qual, 25:1122~1128 [47] van Ginkel JH, Gorissen A, van Veen JA. 1997. Carbon and nitrogen allocation in Lolium perenne in responses to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant Soil,188:299~308 [48] van Ginkel JH, Gorissen A. 1998.In situ decomposition of grass roots asaffectedby elevated atmosphericcarbon dioxide. SoilSoc Am,62:951~958 [49] Wang D-L(王大力),Lin W-H(林伟宏).1999,Effect of elevated CO2 on root secretion in rice, including TOC, formic acid and acetic acid. Acta Ecol Sin(生态学报),19(4):570~572(inChinese) [50] Wang D-L(王大力).1999.CO2 enrichment and allelopathy.Acta Ecol Sin(生态学报),19(1):122~127(in Chinese) [51] Wang W-M(王为民),Wang C(王晨),Li C-J(李春俭),et al.2000.Effects of elevated atmospheric CO2 concentration on growth of plants.Acta Bot Boreal-Occident Sin(西北植物学报),20(4):676~683(in Chinese) [52] WangX-F(汪杏芬),Li S-Y(李世仪),Bai K-Z(白克智),et al.1998.Effeet of elevated atmospheric CO2 on the surface of plant root of and VAMinfection potential.Chin Sci Bull(科学通报),43(19):2083~2084(in Chinese) [53] Wang X-F(汪杏芬),Li S-Y(李世仪),Bai K-Z(白克智),et al.1998. Influence of doubled CO2 on plant growth and soil microbial biomass C and N.ActaBot Sin(植物学报),40(12):1169~1172(in Chinese) [54] WangY-Q(王义琴),Zhang H-J(张慧娟),Yang D-A(杨奠安).1998.Analysis the effect of elevatd atmospheric CO2 on the growth of plant tender root.Chin Sci Bull(科学通报),43(16):1736~1738(in Chinese) [55] Wardle DA, Verboef HA, Clarholm M. 1998. Trophic relationships in the soil microfood-web: Predicting the responses to a changing global environment. Global Change Biol, 4:713~727 [56] Wardle DA. 1995. Impacts of disturbance on detritus food webs in agroecosystems of contrasting tillage and weed management practice. Adv Ecol Res, 26:105~185 [57] Weerakoon WMW, Ingram KT, Moss DN. 2000. Atmospheric carbon dioxide and fertilizer nitrogen effects on radiation interception by rice. Plant Soil, 220:99~106 [58] Williams MA, Rice CW, Owensby CE. 2000. Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil, 227 : 127~137 [59] Wilson PW. 1933. Relation between carbon dioxide and elemental nitrogen assimilation in leguminous plant. Soil Sci, 35:145~165 [60] Xie Z-B(谢祖彬),Zhu J-G(朱建国),ZhangY-L(张雅丽),et al.2002. Responses of rice (Oryza sativa) growth and its C, N and P composition to FACE (Frce-air Carbon Dioxide Enrichment), N and P fertilization.Chin J Appl Ecol(应用生态学报),13(10):1223~1230(in Chinese) [61] XuG-Q(徐国强),Li Y(李杨),Shi Y(史奕),et al.2002.Effect of free-air CO2 enrichment on soil microbe in paddy field. Chin J Appl Ecol(应用生态学报),13(10):1358~1359(in Chinese) [62] Yang J-L(杨江龙).2002.The relationship between atmospheric Co2and plant nitrogen nutrition.Soil Environ Sci(土壤与环境),11(2): 163~166 (in Chinese) [63] Yeates GW, Newton PCD, Ross DJ. 1999. Response of soil nematode famuna to naturally elevated CO2 levels influenced by soil pattern. Nematology, 1:285~293 [64] Zak DR, Pregitzer KS, Curtis PS, et al. 1993. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil,151:105~117 [65] Zhang F-S(张福锁). 1992.The New Study of Soil and Plant Nutrient. Beijing: China Agricultural University Press. 64 (in Chinese) [66] Zhang J-E(章家恩),Liu W-G(刘文高),Wang W-S(王伟胜).2002. Effects of rhizosphere microbes and status of rhizosphere soil nutrients under different vegetations in south subtropical region.Soil Environ Sci(土壤与环境),17(4):38~41(in Chinese) [67] Zheng F-Y(郑凤英),Peng S-L(彭少麟),Li Y-L(李跃林).2002.Effect of enriched CO2 on underground carbon flow in the plant-soil system.Chin JEcol(生态学杂志),21(3):57~60(in Chinese) |
[1] | 洪宣生, 王宗星, 徐清福, 邱勇斌, 成向荣. 杉木+闽楠复层林土壤氮磷组分及微生物性状随林龄变化特征 [J]. 应用生态学报, 2024, 35(3): 622-630. |
[2] | 杨雪, 曹霞, 白冰, 袁艳娜, 张宁, 谢洋, 武春成. 根施生物炭对设施连作土壤氮素转化及黄瓜幼苗根系氮代谢的影响 [J]. 应用生态学报, 2024, 35(3): 713-720. |
[3] | 李佳玉, 施秀珍, 李帅军, 王振宇, 王建青, 邹秉章, 王思荣, 黄志群. 杉木人工林和天然次生林林龄对土壤酶活性的影响 [J]. 应用生态学报, 2024, 35(2): 339-346. |
[4] | 朱雪峰, 孔维栋, 黄懿梅, 肖可青, 罗煜, 安韶山, 梁超. 土壤微生物碳泵概念体系2.0 [J]. 应用生态学报, 2024, 35(1): 102-110. |
[5] | 杨阳, 王宝荣, 窦艳星, 薛志婧, 孙慧, 王云强, 梁超, 安韶山. 植物源和微生物源土壤有机碳转化与稳定研究进展 [J]. 应用生态学报, 2024, 35(1): 111-123. |
[6] | 井艳丽, 李旭华, 张袁, 张馨月, 刘美, 冯秋红. 间伐对川西亚高山云杉人工林土壤微生物残体碳积累的影响 [J]. 应用生态学报, 2024, 35(1): 169-176. |
[7] | 薛志婧, 屈婷婷, 刘春晖, 刘小槺, 王蕊, 王宁, 周正朝, 董治宝. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献 [J]. 应用生态学报, 2023, 34(7): 1845-1852. |
[8] | 庞丹波, 吴梦瑶, 赵娅茹, 杨娟, 董立国, 吴旭东, 陈林, 李学斌, 倪细炉, 李静尧, 梁咏亮. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素 [J]. 应用生态学报, 2023, 34(7): 1957-1967. |
[9] | 张晓伟, 杨显贺, 车豪杰, 秦竞, 毕焕改, 艾希珍. 腐熟玉米秸秆对设施土壤环境及黄瓜产量和品质的影响 [J]. 应用生态学报, 2023, 34(5): 1290-1296. |
[10] | 张冠华, 牛俊, 易亮, 孙宝洋, 李建明, 肖海. 不同植茶年限土壤-微生物生物量碳氮磷化学计量特征 [J]. 应用生态学报, 2023, 34(4): 969-976. |
[11] | 豆梦珂, 张伟东, 杨庆朋, 陈龙池, 刘晔嘉, 胡亚林. 杉木种植和磷添加对土壤微生物生物量及胞外酶活性的影响 [J]. 应用生态学报, 2023, 34(3): 631-638. |
[12] | 于波, 秦嗣军, 吕德国. 自然生草制苹果园土壤微生物、酶活性和养分含量对行间草耕翻还田的响应 [J]. 应用生态学报, 2023, 34(1): 145-150. |
[13] | 阿拉萨, 高广磊, 丁国栋, 张英, 曹红雨, 杜宇佳. 土壤微生物膜生理生态功能研究进展 [J]. 应用生态学报, 2022, 33(7): 1885-1892. |
[14] | 马鑫茹, 郑旭理, 郑春颖, 胡玉婷, 秦华, 陈俊辉, 徐秋芳, 梁辰飞. 毛竹扩张对常绿阔叶林土壤微生物群落的影响 [J]. 应用生态学报, 2022, 33(4): 1091-1098. |
[15] | 莫帅豪, 郑粉莉, 冯志珍, 易祎. 典型黑土区侵蚀-沉积对土壤微生物数量空间分布的影响 [J]. 应用生态学报, 2022, 33(3): 685-693. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 0
|
|
|||||||||||||||||||||||||||||||||
摘要 0
|
|
|||||||||||||||||||||||||||||||||