[1] 陈大珂, 周晓峰, 祝宁. 天然次生林——结构·功能·动态与经营. 哈尔滨: 东北林业大学出版社, 1994: 1-5 [Chen D-K, Zhou X-F, Zhu N. Natural Secondary Forest: Structure, Function, Dynamics and Management. Harbin: Northeast Forestry University Press, 1994: 1-5] [2] 赵利群, 翁国盛, 高秀芹. 次生林综述. 防护林科技, 2006(5): 47-49 [Zhao L-Q, Weng G-S, Gao X-Q. A review of secondary forests. Protection Forest Science and Technology, 2006(5): 47-49] [3] 国家林业局森林资源管理司. 第七次全国森林资源清查及森林资源状况. 林业资源管理, 2010(1): 1-8 [Department of Forest Resources Management, State Forestry Administration. The 7th National Forest Inventory and Status of Forest Resources. Forest Resources Management, 2010(1): 1-8] [4] Réjou-Méchain M, Muller-Landau HC, Detto M, et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 2014, 11: 6827-6840 [5] 刘畅. 黑龙江省森林碳储量空间分布研究. 博士论文. 哈尔滨: 东北林业大学, 2014 [Liu C. Spatial Distribution of Forest Carbon Storage in Heilongjiang Pro-vince. PhD Thesis. Harbin: Northeast Forest University, 2014] [6] 章皖秋, 岳彩荣, 袁华. 林木调查数据的随机、空间、时间特征的模型处理. 西北林学院学报, 2016, 31(5): 230-237 [Zhang W-Q, Yu C-R, Yuan H. Solutions for random effect, spatial and temporal correlation and heterogeneity in the observed forest data. Journal of Northwest Forestry University, 2016, 31(5): 230-237] [7] Brunsdon C, Fotheringham AS, Charlton M. Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 1996, 28: 281-298 [8] Zhang LJ, Bi HQ, Cheng PF, et al. Modeling spatial variation in tree diameter-height relationships. Forest Ecology and Management, 2004, 189: 317-329 [9] Zhang LJ, Shi HJ. Local modeling of tree growth by geographically weighted regression. Forest Science, 2004, 50: 225-244 [10] Zhen Z, Li FR, Liu ZG, et al. Geographically local modeling of occurrence, count, and volume of downwood in Northeast China. Applied Geography, 2013, 37: 114-126 [11] 杜一尘, 李明泽, 范文义, 等. 基于地理加权回归模型与林火遥感数据估算森林年龄. 林业科学, 2019, 55(6): 184-194 [Du Y-C, Li M-Z, Fan W-Y, et al. Estimation of forest stand age based on GWR model and forest fire remote sensing data. Scientia Silvae Sinicae, 2019, 55(6): 184-194] [12] Liu C, Zhang LJ, Li FR, et al. Spatial modeling of the carbon stock of forest trees in Heilongjiang Province, China. Journal of Forestry Research, 2014, 25: 269-280 [13] 刘正显. 基于GWR模型的凉水自然保护区森林生物量空间分布研究. 硕士论文. 哈尔滨: 东北林业大学, 2015 [Liu Z-X. Research on the Spatial Distribution of Liangshui Nature Reserve Forest Biomass Based on Geographically Weighted Regression. Master Thesis. Harbin: Northeast Forest University, 2015] [14] 戚玉娇, 李凤日. 基于KNN方法的大兴安岭地区森林地上碳储量遥感估算. 林业科学, 2015, 51(5): 46-55 [Qi Y-J, Li F-R. Remote sensing estimation of aboveground forest carbon storage in Daxing’an Mountains based on KNN method. Scientia Silvae Sinicae, 2015, 51(5): 46-55] [15] Chen L, Ren CY, Zhang B, et al. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests, 2018, 9: 582 [16] Guo L, Ma ZH, Zhang LJ. Comparison of bandwidth selection in application of geographically weighted regression: A case study. Canadian Journal of Forest Research, 2008, 38: 2526-2534 [17] 张会儒, 唐守正. 东北天然林可持续经营技术研究. 北京: 中国林业出版社, 2011: 28-30 [Zhang H-R, Tang S-Z. Research on Sustainable Management Technology of Natural Forest in Northeast China. Beijing: China Forestry Press, 2011: 28-30] [18] Fotheringham AS, Brunsdon C, Charlton M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. New York: John Wiley and Sons, 2002: 27-64 [19] 陈科屹, 张会儒, 雷相东. 不同群落蒙古栎种群空间格局的地统计学分析. 应用生态学报, 2018, 29(5): 1542-1550 [Chen K-Y, Zhang H-R, Lei X-D. Geostatistical analysis on the spatial pattern of Quercus mongo-lica population in different communities. Chinese Journal of Applied Ecology, 2018, 29(5): 1542-1550] [20] Cambardella CA, Moorman TB, Novak J. et al. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 1994, 58: 1501-1511 [21] Wheeler D, Tiefelsdorf M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 2005, 7: 161-187 [22] 吴国训. 江西省森林植被净初级生产力及碳储量估算. 博士论文. 南京: 南京林业大学, 2015 [Wu G-X. Net Primary Productivity and Carbon Storage Estimation of Forest in Jiangxi Province, China. PhD Thesis. Nanjing: Nanjing Forest University, 2015] [23] 王海宾, 侯瑞萍, 郑冬梅, 等. 基于地理加权回归模型的亚热带地区乔木林生物量估算. 农业机械学报, 2018, 49(6): 184-190 [Wang H-B, Hou R-P, Zheng D-M, et al. Biomass estimation of arbor forest in subtropical region based on geographically weighted regression model. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 184-190] [24] Propastin P. Multiscale analysis of the relationship between topography and aboveground biomass in the tropical rainforests of Sulawesi, Indonesia. International Journal of Geographical Information, 2011, 25: 455-472 [25] Propastin P. Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observations and Geoinformation, 2012, 18: 82-90 [26] 郭含茹. 基于地理加权回归的区域森林碳储量估计. 硕士论文. 杭州: 浙江农林大学, 2015 [Guo H-R. Geographically Weighted Regression Based on Estimation of Regional Forest Carbon Storage. Master Thesis. Hangzhou: Zhejiang Agriculture and Forest University, 2015] [27] 张国峰, 杨立荣, 瞿明凯, 等. 基于地理加权回归克里格的日平均气温插值. 应用生态学报, 2015, 26(5): 1531-1536 [Zhang G-F, Yang L-R, Qu M-K, et al. Interpolation of daily mean temperature by using geographically weighted regression-Kriging. Chinese Journal of Applied Ecology, 2015, 26(5): 1531-1536] [28] 李豪, 刘涛, 徐精文. 基于混合地理加权回归与克里格的区域降水量空间插值方法. 中国农业气象, 2018, 39(10): 674-684 [Li H, Liu T, Xu J-W. Spatial interpolation of regional precipitation based on mixed geographical weighted regression combined with Kriging interpolation. Chinese Journal of Agrometeorology, 2018, 39(10): 674-684] |