欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (4): 1261-1271.doi: 10.13287/j.1001-9332.202504.031

• 研究论文 • 上一篇    下一篇

浙江枸杞岛筏式养殖区大型海藻组成与时空变化

李晶晶1, 汪振华1,2*, 章守宇1,2, 林军1,2, 王凯1,2, 赵旭1,2   

  1. 1上海海洋大学海洋科学与生态环境学院, 上海 201306;
    2上海海洋大学海洋牧场工程技术研究中心, 上海 201306
  • 收稿日期:2024-10-11 接受日期:2025-01-16 出版日期:2025-04-18 发布日期:2025-10-18
  • 通讯作者: *E-mail: zh_wang@shou.edu.cn
  • 作者简介:李晶晶, 女, 2000年生, 硕士研究生。主要从事近海栖息地生态研究。E-mail: lijingjingljj0221@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFD2401903,2019YFD0901303)

Composition and spatiotemporal variation of macroalgae in large-scale raft culture area of Gouqi Island, Zhejiang, China

LI Jingjing1, WANG Zhenhua1,2*, ZHANG Shouyu1,2, LIN Jun1,2, WANG Kai1,2, ZHAO Xu1,2   

  1. 1College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China;
    2Engineering Technology Research Center of Marine Ranching, Shanghai Ocean University, Shanghai 201306, China
  • Received:2024-10-11 Accepted:2025-01-16 Online:2025-04-18 Published:2025-10-18

摘要: 为全面掌握大规模筏式养殖活动对海域大型海藻多样性及生物量分布格局的影响,于2021年7月—2022年6月对枸杞岛贻贝养殖区(筏式养殖区)和天然岩相潮间带(对照区)的大型海藻进行了逐月采样。采用Shannon多样性指数、Margalef丰富度指数、Pielou均匀度指数和相对重要性指数,结合冗余分析,对筏式养殖区和对照区大型海藻的α多样性、生长周期、生物量时空格局及其与环境因子的关系进行比较。结果表明: 12个月在筏式养殖区共采集大型海藻61种,隶属13目25科31属,全年优势藻类有24种,其中叉珊藻、厚膜藻和气生硬毛藻为多数月份优势种;对照区采集大型海藻47种,隶属13目24科31属,优势藻类为13种,仅鼠尾藻为全年优势种。筏式养殖区以鹿角沙菜、密毛沙菜、厚膜藻、蜈蚣藻一种、叉珊藻、石莼、裂片石莼和铜藻为代表的藻类在旺盛生长期显著增加。筏式养殖区大型海藻Shannon指数和Margalef指数(分别为2.36±0.25和1.45±0.23)均高于对照区(分别为1.85±0.32和0.96±0.39)。筏式养殖区大型海藻的生物量在时间上呈显著月变化,平均生物量为(10374.53±4688.17) g·m-2,远高于对照区的(3090.40±2230.33) g·m-2。在空间上,筏式养殖区近岸侧月均生物量(11466.12±227.65 g·m-2)高于外侧(10498.29±1266.77 g·m-2)和中部(9229.95±252.75 g·m-2)。冗余分析显示,透明度、盐度、溶解氧、水温、浊度和铵氮与群落结构显著相关。研究表明,大规模筏式养殖区支撑了比天然潮间带更高的大型海藻多样性和生物量,同时以叉珊藻、厚膜藻、铜藻为代表的优势藻类在人工生境延续了更长的旺盛生长期,研究结果可为海洋牧场筏式藻场的构建提供重要参考。

关键词: 大型海藻, 筏式养殖区, 群落结构, 月变化, 旺盛生长期

Abstract: To comprehensively understand the impacts of large-scale raft culture activities on the diversity and biomass of macroalgae, we collected samples monthly from July 2021 to June 2022 in the Gouqi Island mussel farming area (raft culture area) and the natural rocky intertidal zone (control area). By using indices such as Shannon diversity, Margalef richness, Pielou evenness and relative importance index, as well as redundancy analysis, we compared the responses of alpha diversity, growth cycle, biomass spatiotemporal patterns of macroalgae to environmental factors in both raft culture area and control area. The results showed that a total of 61 macroalgae species were collected in the raft culture area, belonging to 13 orders, 25 families, and 31 genera. There were 24 dominant macroalgae species annually, among which Jania decussato-ichotoma, Pachymenia carnosa, and Chaetomorpha aerea dominated in most of months. 47 species of macroalgae, belonging to 31 genera and 24 families in 13 orders, were collected in control area. There were 13 dominant species, but only Sargasum thunbergii dominated throughout the year. The vigorous growth period of macroalgae represented by Hypnea cervicis, Hypnea boergesenii, P. carnosa, Grateloupia sp., J. decussato-dichotoma, Ulva lactuca, Ulva fasciata and Sargasum horneri in raft culture area significantly increased. Shannon index and Margalef index of macroalgae in raft culture area (2.36±0.25 and 1.45±0.23, respectively) were higher than those in control area (1.85±0.32 and 0.96±0.39, respectively). The macroalgae biomass in raft culture area exhibited a notable monthly variation, with a mean biomass of (10374.53±4688.17) g·m-2, which was considerably higher than that in the control area (3090.40±2230.33 g·m-2). In terms of spatial distribution, the mean monthly biomass was higher in nearshore region of raft culture area (11466.12±227.65 g·m-2) than that to the outer region (10498.29±1266.77 g·m-2) and the middle region (9229.95±252.75 g·m-2). The redundancy analysis indicated that transparency, salinity, dissolved oxygen, water temperature, turbidity, and ammonium nitrogen were significantly correlated to community structure. Those results indicated that large-scale raft culture area supported both higher diversity and biomass of macroalgae than intertidal zones. Meanwhile, dominant macroalgae such as J. decussato-ichotoma, P. carnosa and S. horneri presented extended periods of vigorous growth in artificial habitat. The conclusions could be taken into consideration on construction of raft macroalgal bed in marine ranching programs.

Key words: macroalgae, raft culture area, community structure, monthly variation, vigorous growth period