[1] 张蕊, 申贵仓, 张旭东, 等. 四川长宁毛竹林碳储量与碳汇能力估测. 生态学报, 2014, 34(13): 3592-3601 [2] 国家林业和草原局. 中国森林资源报告(2014—2018). 北京: 中国林业出版社, 2019 [3] 张亚慧, 黄宇翔, 于文吉, 等. 我国竹产业的发展历程、现状及趋势. 中国人造板, 2019, 26(6): 32-36 [4] 魏玲玲, 邢思懿, 王懿祥. 我国毛竹林经营中的抛荒和自然扩张困境及对策. 竹子学报, 2023, 42(3): 55-62 [5] 白尚斌, 周国模, 王懿祥, 等. 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化. 生物多样性, 2013, 21(3): 288-295 [6] Zhao YZ, Liang CF, Shao S, et al. Linkages of litter and soil C:N:P stoichiometry with soil microbial resource limitation and community structure in a subtropical broadleaf forest invaded by Moso bamboo. Plant and Soil, 2021, 465: 1-18 [7] 杨清培, 王兵, 郭起荣, 等. 大岗山毛竹扩张对常绿阔叶林生态系统碳储特征的影响. 江西农业大学学报, 2011, 33(3): 529-536 [8] Yan YB, Tu XY, Zhang H, et al. Forest transformation increases soil N2O fluxes in an unmanaged Moso bamboo forest. Forest Ecology and Management, 2025, 576: 122280 [9] 王树梅, 王波, 范少辉, 等. 带状采伐对毛竹林土壤细菌群落结构及多样性的影响. 南京林业大学学报: 自然科学版, 2021, 45(2): 60-68 [10] 张洋洋, 凡莉莉, 王敏, 等. 带状采伐对毛竹林土壤理化性质和酶活性的影响. 森林与环境学报, 2020, 40(3): 234-242 [11] 车佳聪, 杨佳, 吴政鸿, 等. 林火对小兴安岭阔叶红松林土壤理化性质、酶活性和微生物群落的长期影响. 应用生态学报, 2025, 36(4): 1071-1080 [12] Sinsabaugh RL, Lauber CL, Weintraub MN, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11: 1252-1264 [13] Allison SD, Gartner TB, Holland K, et al. Soil enzymes: Linking proteomics and ecological processes// Yates MV, ed. Manual of Environmental Microbiology. Washington DC: ASM Press, 2007: 704-711 [14] 刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展. 中国农学通报, 2011, 27(21): 1-7 [15] 颜顾浙, 方伟, 卢络天, 等. 土壤酶活性对不同植物连作的差异响应. 浙江农林大学学报, 2023, 40(3): 520-530 [16] 张美曼, 官凤英, 范少辉, 等. 竹林土壤养分变异影响因素研究进展. 世界林业研究, 2018, 31(4): 18-22 [17] 张一平, 窦军霞, 马友鑫, 等. 西双版纳热带次生林林窗小气候要素的时空分布特征. 应用生态学报, 2003, 14(12): 2129-2135 [18] 何杏珍. 毛竹低产林改造效果研究. 世界竹藤通讯, 2017, 15(4): 36-38 [19] Lv Y, Jin Y, Tang CX, et al. Strip clear-cutting transformations increase soil N2O emissions in abandoned Moso bamboo forests. Journal of Environmental Management, 2024, 370: 122700 [20] 李保国, 李永涛, 任图生, 等. 土壤采样与分析方法(上、下册). 北京: 电子工业出版社, 2022: 167-181 [21] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986: 274-344 [22] 张鹏, 田瑞, 胡啸, 等. 增温和降水变化对陇中黄土高原半干旱麦田土壤有机碳和酶活性的影响. 应用生态学报, 2024, 35(11): 3031-3042 [23] 王昌亮, 王庆成, 张程, 等. 间伐强度对落叶松人工林土壤有机碳的影响. 森林工程, 2015, 31(1): 12-16 [24] 吴章明, 唐思莹, 宋思宇, 等. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报, 2024, 42(4): 847-860 [25] Ma JY, Han Y, Ji SN, et al. Reducing soil organic carbon mineralization under moderate thinning magnifies the soil carbon sink in a Larix principis-rupprechtii plantation. Catena, 2022, 210: 105858 [26] 陈洪连, 张彦东, 孙海龙, 等. 东北温带次生林采伐干扰对土壤氮矿化的影响. 生态与农村环境学报, 2015, 31(1): 88-93 [27] 刘夏, 牟长城, 谭稳稳. 采伐对小兴安岭落叶松森林沼泽土壤氮含量和氮密度的影响. 土壤通报, 2013, 44(6): 1408-1413 [28] Hou GR, Zhang JF, Fan C, et al. Stand density management of cypress plantations based on the influence of soil hydrothermal conditions on fine root dynamics in southwestern China. Forests, 2024, 16: 46 [29] Yang L, Niu SL, Tian DS, et al. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning. Science of the Total Environment, 2022, 804: 150225 [30] Liu QY, Xu XL, Wang HM, et al. Dominant extracellular enzymes in priming of SOM decomposition depend on temperature. Geoderma, 2019, 343: 187-195 [31] Wang YD, Wang ZL, Zhang QZ, et al. Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Science of the Total Environment, 2018, 624: 1131-1139 [32] Paolo N, Carmen TC, Richard PD. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 2018, 54: 11-19 [33] 吕宁宁, 刘子晗, 杨培蓉, 等. 不同遮荫处理对杉木幼苗生长及土壤碳氮代谢酶活性的影响. 生态学报, 2024, 44(9): 3600-3611 [34] 陈雅轩, 张彧璠, 王佳乐, 等. 不同林龄华北落叶松土壤酶活性和碳氮磷化学计量变化. 生态学报, 2025, 45(1): 25-41 [35] 张宝山. 抚育间伐对森林土壤碳循环及微生物多样性影响研究. 博士论文. 哈尔滨: 东北林业大学, 2024 [36] Zhou S, Chen L, Wang JY, et al. Stronger microbial decay of recalcitrant carbon in tropical forests than in subtropical and temperate forest ecosystems in China. Catena, 2022, 215: 106351 [37] Zhang DD, Wu JJ, Yang F, et al. Linkages between soil organic carbon fractions and carbon-hydrolyzing enzyme activities across riparian zones in the Three Gorges of China. Scientific Reports, 2020, 10: 8433 [38] Wang J, Fu X, Rajan G, et al. Responses of soil bacterial community and enzyme activity to organic matter components under long-term fertilization on the Loess Plateau of China. Applied Soil Ecology, 2021, 166: 103992 [39] Zhang Q, Feng J, Wu JJ, et al. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China. Land Degradation & Development, 2019, 30: 459-469 [40] 刘超, 赵光影, 宋艳宇, 等. 气候变化背景下湿地土壤酶活性研究进展. 中国农学通报, 2019, 35(33): 91-97 |