欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2026, Vol. 37 ›› Issue (1): 136-144.doi: 10.13287/j.1001-9332.202601.017

• 研究论文 • 上一篇    下一篇

利用无人机多光谱遥感和机器学习反演矿区复垦土壤有机碳含量

王志坤1, 陈磊2, 程雪莹1, 夏雨1, 李新举3, 胡晓1*   

  1. 1山东农业大学信息科学与工程学院, 山东泰安 271018;
    2中国电子系统技术有限公司, 北京 100141;
    3山东农业大学资源与环境学院, 山东泰安 271018
  • 收稿日期:2025-03-23 修回日期:2025-11-18 发布日期:2026-07-18
  • 通讯作者: *E-mail: huxiaozhy@163.com
  • 作者简介:王志坤, 男, 1999年生, 硕士研究生。主要从事土壤养分遥感监测与信息化研究。E-mail: sdauwangzhikun@outlook.com
  • 基金资助:
    国家自然科学基金项目(42077446)

Inversion of reclaimed soil organic carbon content in mining areas using unmanned aerial vehicle multispectral remote sensing and machine learning

WANG Zhikun1, CHEN Lei2, CHENG Xueying1, XIA Yu1, LI Xinju3, HU Xiao1*   

  1. 1College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China;
    2China Electronic System Technology Corporation, Beijing 100141, China;
    3College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2025-03-23 Revised:2025-11-18 Published:2026-07-18

摘要: 土壤有机碳(SOC)的快速、准确监测对矿区复垦土壤质量评价意义重大。本研究以兴隆庄煤矿区复垦土壤为对象,在获取无人机多光谱影像和样点SOC含量的基础上,分别构建了5种反演变量:波段数学变换组、传统光谱指数组、改进光谱指数组、全变量组和以改进贪婪算法(IGA)筛选的变量组,利用自适应提升(AdaBoost)、反向传播神经网络(BPNN)、类别提升(CatBoost)、轻量级梯度提升机(LightGBM)、随机森林(RF)、极限梯度提升(XGBoost)6种机器学习算法,构建了复垦SOC反演模型。结果表明: 1)改进光谱指数组作为变量时,反演模型精度高于传统光谱指数组;2)IGA筛选变量组作为变量时,反演模型精度和稳定性显著提高;3)IGA筛选变量组作为变量的LightGBM模型是复垦SOC的最优反演模型,建模集决定系数(R2)为0.825,均方根误差(RMSE)为0.914,验证集R2为0.793,RMSE为0.945;4)反演SOC含量范围为7.75~13.60 g·kg-1,平均值为10.48 g·kg-1,与样本SOC测定结果较为一致。本研究结果可为矿区土地复垦规划编制提供技术支撑。

关键词: 土壤有机碳, 复垦, 无人机, 多光谱遥感, 机器学习, 反演模型

Abstract: The rapid and accurate monitoring of soil organic carbon (SOC) is of great significance for evaluating the quality of reclaimed soils in mining areas. With reclaimed soils from the Xinglongzhuang Coal Mine as the object, we constructed five types of inversion variables based on drone multispectral imagery and sample SOC content: band mathematical transformation groups, traditional spectral index groups, improved spectral index groups, full-variable groups, and groups selected by the improved greedy algorithm (IGA). We further built SOC inversion models with six machine learning algorithms, AdaBoost, backpropagation neural network (BPNN), CatBoost, LightGBM, random forest (RF), and XGBoost. The results showed that: 1) When the improved spectral index group was used as the variable, the accuracy of inversion model was higher than that of the traditional spectral index group. 2) When the IGA-selected variable group was used, the accuracy and stability of the model significantly improved. 3) The LightGBM model using the IGA-selected variable group was the optimal SOC inversion model for reclaimed soils, with a modeling set coefficient of determination (R2) of 0.825, root mean square error (RMSE) of 0.914, a validation set R2 of 0.793, and RMSE of 0.945. 4) The inverted SOC content ranged from 7.75 to 13.60 g·kg-1, with an average of 10.48 g·kg-1, which was consistent with the sample SOC measurements. These fin-dings could provide technical support for the planning and implementation of land reclamation in mining areas.

Key words: soil organic carbon, reclamation, unmanned aerial vehicle, multispectral remote sensing, machine learning, inversion model