欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (7): 1941-1951.doi: 10.13287/j.1001-9332.202507.019

• 专家见解 • 上一篇    下一篇

基于植物群落性状预测生态系统初级生产力:理论基础与研究进展

何念鹏1,2,4*, 闫镤1,2, 郭泓伯3,4   

  1. 1东北林业大学碳中和技术创新研究院/生态学院, 哈尔滨 150040;
    2东北林业大学森林生态系统可持续经营教育部重点实验室, 哈尔滨 150040;
    3中国科学院地理科学与资源研究所中国科学院生态系统网络观测与模拟重点实验室, 北京 100101;
    4中国科学院兴安岭地球关键带与地表通量观测研究站, 黑龙江大兴安岭 165200
  • 收稿日期:2025-02-10 接受日期:2025-06-25 出版日期:2025-07-18 发布日期:2026-01-18
  • 通讯作者: *E-mail: henp@igrnrr.ac.cn
  • 作者简介:何念鹏, 男, 1976年生, 博士, 教授, 博士生导师。主要从事植物功能生态学与生态系统生态学研究。E-mail: henp@igsnrr.ac.cn
  • 基金资助:
    国家自然科学基金重点项目(32430067)和科技部基础研发项目子课题(2022YFF080210102)

Predicting ecosystem primary productivity on plant community traits: Theoretical basis and research progress

HE Nianpeng1,2,4*, YAN Pu1,2, GUO Hongbo3,4   

  1. 1Institute of Carbon Neutrality/School of Ecology, Northeast Forestry University, Harbin 150040, China;
    2Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China;
    3Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    4Earth Critical Zone and Flux Research Station of Xing’an Mountains, Chinese Academy of Sciences, Daxing’anling 165200, Heilongjiang, China
  • Received:2025-02-10 Accepted:2025-06-25 Online:2025-07-18 Published:2026-01-18

摘要: 植物贡献了陆地生态系统绝大部分的初级生产力,是其物质循环和能量流动的基础。如何提升生态系统初级生产力的预测精度始终是生态学的热点问题。长期以来,研究者利用基于辐射的遥感模型或以大叶模式为核心的过程模型预测生产力的时空变异,但不同模型的模拟结果存在巨大差异,制约了对全球变化下生态系统固碳能力的认识。近年来,植物功能性状作为新一代生产力过程模型的核心参数而备受关注。然而,传统研究中个体水平的性状参数与群落水平的生产力之间存在明显的尺度不匹配性,成为模型误差的重要来源之一。为破解上述科学难题,本文引用了物理学经典的发动机功率输出模式,构建了以植物群落性状及其二维特征(数量性状和效率性状)为核心的生态系统初级生产力预测框架(TBP)。与传统过程模型不同,TBP框架的所有参数均为群落尺度;环境因子既直接影响生态系统生产力,也通过调控群落性状间接影响生产力。在此基础上,本文利用原位调查的中国植物群落性状数据库(涵盖叶绿素、叶面积、比叶面积、叶干质量、叶氮和叶磷浓度等),通过3个实证案例探讨了TBP理论的应用情景。TBP理论有效弥合了植物个体性状与生态系统初级生产力之间的尺度差异,并可兼容通量观测、高光谱观测、遥感观测和机器学习等技术生成的大量空间数据,具有很好的应用前景。目前该理论框架仍处于初期发展阶段,除需进一步的理论创新和方法拓展外,还需要大量地面观测及遥感数据的支撑及验证,从而为新一代机理过程模型的开发奠定基础,切实提升生态系统初级生产力的预测精度。

关键词: 植物功能性状, 植物群落性状, 生态系统初级生产力, 尺度, 模型

Abstract: Plants contribute significantly to ecosystem primary productivity, serving as the basis of material cycling and energy flow. How to improve the accuracy of ecosystem productivity predictions is a classic topic in ecology. For decades, researchers have employed radiation-based remote sensing models or big-leaf-based process models to predict the spatiotemporal variations in ecosystem productivity. However, large discrepancies among model outputs constrain our understanding of the carbon sequestration capacity of ecosystems under global change. Recently, plant functional traits, as key parameters in next-generation process models, have received extensive attention. However, the scale mismatch between traditionally measured individual-level traits and community-level productivity constitutes an important source of model uncertainties. To address these challenges, we introduced the classical engine power model from physics and developed a novel trait-based productivity (TBP) framework centered on the two-dimensionality of plant community traits (quantity traits and efficiency traits). Contrary to the traditional models, all parameters in the TBP framework were defined at the community scale, with environmental factors influencing ecosystem productivity both directly and indirectly by regulating plant community traits. On this basis, using an in situ multi-trait database of Chinese ecosystems (including leaf chlorophyll concentration, leaf area, specific leaf area, leaf dry mass, and leaf nitrogen and phosphorus concentrations), we used three empirical studies to demonstrate the application scenarios of TBP theory. The TBP framework effectively bridges the scale gap between traits at individual level and ecosystem primary productivity. This framework is compatible with massive spatial data generated by flux observations, hyperspectral sensing, remote sensing, machine learning technologies, thus holding considerable application potential. Currently, the TBP framework is at an early stage. Besides requiring further theoretical innovation and methodological improvement, it also necessitates extensive support and validation from ground-based and remote sensing data. This will lay the foundation for the development of new-generation mechanistic process models and effectively improve the prediction accuracy of ecosystem productivity.

Key words: plant functional trait, plant community trait, ecosystem primary productivity, scale, model